Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvral3vw
Metamath Proof Explorer
Description: Change bound variables of triple restricted universal quantification,
using implicit substitution. Version of cbvral3v with a disjoint
variable condition, which does not require ax-13 . (Contributed by NM , 10-May-2005) (Revised by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbvral3vw.1
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) )
cbvral3vw.2
⊢ ( 𝑦 = 𝑣 → ( 𝜒 ↔ 𝜃 ) )
cbvral3vw.3
⊢ ( 𝑧 = 𝑢 → ( 𝜃 ↔ 𝜓 ) )
Assertion
cbvral3vw
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbvral3vw.1
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) )
2
cbvral3vw.2
⊢ ( 𝑦 = 𝑣 → ( 𝜒 ↔ 𝜃 ) )
3
cbvral3vw.3
⊢ ( 𝑧 = 𝑢 → ( 𝜃 ↔ 𝜓 ) )
4
1
2ralbidv
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 ) )
5
4
cbvralvw
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 )
6
2 3
cbvral2vw
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 ↔ ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 )
7
6
ralbii
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜒 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 )
8
5 7
bitri
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 𝜓 )