Metamath Proof Explorer


Theorem cbvral3vw

Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Version of cbvral3v with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-May-2005) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvral3vw.1 x=wφχ
cbvral3vw.2 y=vχθ
cbvral3vw.3 z=uθψ
Assertion cbvral3vw xAyBzCφwAvBuCψ

Proof

Step Hyp Ref Expression
1 cbvral3vw.1 x=wφχ
2 cbvral3vw.2 y=vχθ
3 cbvral3vw.3 z=uθψ
4 1 2ralbidv x=wyBzCφyBzCχ
5 4 cbvralvw xAyBzCφwAyBzCχ
6 2 3 cbvral2vw yBzCχvBuCψ
7 6 ralbii wAyBzCχwAvBuCψ
8 5 7 bitri xAyBzCφwAvBuCψ