Metamath Proof Explorer


Theorem cbvral3v

Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvral3vw when possible. (Contributed by NM, 10-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral3v.1 x=wφχ
cbvral3v.2 y=vχθ
cbvral3v.3 z=uθψ
Assertion cbvral3v xAyBzCφwAvBuCψ

Proof

Step Hyp Ref Expression
1 cbvral3v.1 x=wφχ
2 cbvral3v.2 y=vχθ
3 cbvral3v.3 z=uθψ
4 1 2ralbidv x=wyBzCφyBzCχ
5 4 cbvralv xAyBzCφwAyBzCχ
6 2 3 cbvral2v yBzCχvBuCψ
7 6 ralbii wAyBzCχwAvBuCψ
8 5 7 bitri xAyBzCφwAvBuCψ