Metamath Proof Explorer


Theorem cbvral2vw

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Aug-2004) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvral2vw.1 x=zφχ
cbvral2vw.2 y=wχψ
Assertion cbvral2vw xAyBφzAwBψ

Proof

Step Hyp Ref Expression
1 cbvral2vw.1 x=zφχ
2 cbvral2vw.2 y=wχψ
3 1 ralbidv x=zyBφyBχ
4 3 cbvralvw xAyBφzAyBχ
5 2 cbvralvw yBχwBψ
6 5 ralbii zAyBχzAwBψ
7 4 6 bitri xAyBφzAwBψ