Metamath Proof Explorer


Theorem cbvrex2vw

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v with a disjoint variable condition, which does not require ax-13 . (Contributed by FL, 2-Jul-2012) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvrex2vw.1 x=zφχ
cbvrex2vw.2 y=wχψ
Assertion cbvrex2vw xAyBφzAwBψ

Proof

Step Hyp Ref Expression
1 cbvrex2vw.1 x=zφχ
2 cbvrex2vw.2 y=wχψ
3 1 rexbidv x=zyBφyBχ
4 3 cbvrexvw xAyBφzAyBχ
5 2 cbvrexvw yBχwBψ
6 5 rexbii zAyBχzAwBψ
7 4 6 bitri xAyBφzAwBψ