Metamath Proof Explorer


Theorem cbvrex2vw

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v with a disjoint variable condition, which does not require ax-13 . (Contributed by FL, 2-Jul-2012) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvrex2vw.1 x = z φ χ
cbvrex2vw.2 y = w χ ψ
Assertion cbvrex2vw x A y B φ z A w B ψ

Proof

Step Hyp Ref Expression
1 cbvrex2vw.1 x = z φ χ
2 cbvrex2vw.2 y = w χ ψ
3 1 rexbidv x = z y B φ y B χ
4 3 cbvrexvw x A y B φ z A y B χ
5 2 cbvrexvw y B χ w B ψ
6 5 rexbii z A y B χ z A w B ψ
7 4 6 bitri x A y B φ z A w B ψ