| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltadd1im | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  →  ( 𝐴  +s  𝐶 )  <s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 2 |  | addscom | ⊢ ( ( 𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  =  ( 𝐶  +s  𝐴 ) ) | 
						
							| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  =  ( 𝐶  +s  𝐴 ) ) | 
						
							| 4 |  | addscom | ⊢ ( ( 𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  =  ( 𝐶  +s  𝐵 ) ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  =  ( 𝐶  +s  𝐵 ) ) | 
						
							| 6 | 3 5 | breq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  <s  ( 𝐵  +s  𝐶 )  ↔  ( 𝐶  +s  𝐴 )  <s  ( 𝐶  +s  𝐵 ) ) ) | 
						
							| 7 | 1 6 | sylibd | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  →  ( 𝐶  +s  𝐴 )  <s  ( 𝐶  +s  𝐵 ) ) ) |