Metamath Proof Explorer


Theorem sleadd1im

Description: Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd1im Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) -> A <_s B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltadd1im Could not format ( ( B e. No /\ A e. No /\ C e. No ) -> ( B ( B +s C ) ( B ( B +s C )
2 1 3com12 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B ( B +s C ) ( B ( B +s C )
3 sltnle BNoANoB<sA¬AsB
4 3 ancoms ANoBNoB<sA¬AsB
5 4 3adant3 ANoBNoCNoB<sA¬AsB
6 addscl Could not format ( ( B e. No /\ C e. No ) -> ( B +s C ) e. No ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( B +s C ) e. No ) with typecode |-
7 6 3adant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) e. No ) with typecode |-
8 addscl Could not format ( ( A e. No /\ C e. No ) -> ( A +s C ) e. No ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( A +s C ) e. No ) with typecode |-
9 sltnle Could not format ( ( ( B +s C ) e. No /\ ( A +s C ) e. No ) -> ( ( B +s C ) -. ( A +s C ) <_s ( B +s C ) ) ) : No typesetting found for |- ( ( ( B +s C ) e. No /\ ( A +s C ) e. No ) -> ( ( B +s C ) -. ( A +s C ) <_s ( B +s C ) ) ) with typecode |-
10 7 8 9 3imp3i2an Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( B +s C ) -. ( A +s C ) <_s ( B +s C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( B +s C ) -. ( A +s C ) <_s ( B +s C ) ) ) with typecode |-
11 2 5 10 3imtr3d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( -. A <_s B -> -. ( A +s C ) <_s ( B +s C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( -. A <_s B -> -. ( A +s C ) <_s ( B +s C ) ) ) with typecode |-
12 11 con4d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) -> A <_s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) -> A <_s B ) ) with typecode |-