Step |
Hyp |
Ref |
Expression |
1 |
|
no3inds.1 |
⊢ ( 𝑎 = 𝑑 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
no3inds.2 |
⊢ ( 𝑏 = 𝑒 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
no3inds.3 |
⊢ ( 𝑐 = 𝑓 → ( 𝜒 ↔ 𝜃 ) ) |
4 |
|
no3inds.4 |
⊢ ( 𝑎 = 𝑑 → ( 𝜏 ↔ 𝜃 ) ) |
5 |
|
no3inds.5 |
⊢ ( 𝑏 = 𝑒 → ( 𝜂 ↔ 𝜏 ) ) |
6 |
|
no3inds.6 |
⊢ ( 𝑏 = 𝑒 → ( 𝜁 ↔ 𝜃 ) ) |
7 |
|
no3inds.7 |
⊢ ( 𝑐 = 𝑓 → ( 𝜎 ↔ 𝜏 ) ) |
8 |
|
no3inds.8 |
⊢ ( 𝑎 = 𝑋 → ( 𝜑 ↔ 𝜌 ) ) |
9 |
|
no3inds.9 |
⊢ ( 𝑏 = 𝑌 → ( 𝜌 ↔ 𝜇 ) ) |
10 |
|
no3inds.10 |
⊢ ( 𝑐 = 𝑍 → ( 𝜇 ↔ 𝜆 ) ) |
11 |
|
no3inds.i |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ∧ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜂 ) → 𝜑 ) ) |
12 |
|
eqid |
⊢ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( ( No × No ) × No ) ∧ 𝑤 ∈ ( ( No × No ) × No ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑧 ) ) { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑧 ) ) = ( 1st ‘ ( 1st ‘ 𝑤 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑧 ) ) { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑧 ) ) = ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ) ∧ ( ( 2nd ‘ 𝑧 ) { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd ‘ 𝑤 ) ∨ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ∧ 𝑧 ≠ 𝑤 ) ) } = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( ( No × No ) × No ) ∧ 𝑤 ∈ ( ( No × No ) × No ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑧 ) ) { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑧 ) ) = ( 1st ‘ ( 1st ‘ 𝑤 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑧 ) ) { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑧 ) ) = ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ) ∧ ( ( 2nd ‘ 𝑧 ) { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd ‘ 𝑤 ) ∨ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ∧ 𝑧 ≠ 𝑤 ) ) } |
13 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } |
14 |
13
|
lrrecfr |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No |
15 |
13
|
lrrecpo |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No |
16 |
13
|
lrrecse |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No |
17 |
13
|
lrrecpred |
⊢ ( 𝑎 ∈ No → Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) = ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) = ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ) |
19 |
13
|
lrrecpred |
⊢ ( 𝑏 ∈ No → Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) = ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) = ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ) |
21 |
13
|
lrrecpred |
⊢ ( 𝑐 ∈ No → Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) = ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) ) |
22 |
21
|
3ad2ant3 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) = ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) ) |
23 |
22
|
raleqdv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ) ) |
24 |
20 23
|
raleqbidv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ) ) |
25 |
18 24
|
raleqbidv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ) ) |
26 |
20
|
raleqdv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ) ) |
27 |
18 26
|
raleqbidv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ) ) |
28 |
22
|
raleqdv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ) |
29 |
18 28
|
raleqbidv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ) |
30 |
25 27 29
|
3anbi123d |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ) ↔ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ) ) |
31 |
18
|
raleqdv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ) ) |
32 |
22
|
raleqdv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ) ) |
33 |
20 32
|
raleqbidv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ) ) |
34 |
20
|
raleqdv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ) |
35 |
31 33 34
|
3anbi123d |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ) ↔ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ) ) |
36 |
22
|
raleqdv |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜂 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜂 ) ) |
37 |
30 35 36
|
3anbi123d |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜂 ) ↔ ( ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ∧ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜂 ) ) ) |
38 |
37 11
|
sylbid |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜂 ) → 𝜑 ) ) |
39 |
12 14 15 16 14 15 16 14 15 16 1 2 3 4 5 6 7 8 9 10 38
|
xpord3ind |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → 𝜆 ) |