Metamath Proof Explorer


Theorem no3inds

Description: Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Hypotheses no3inds.1 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
no3inds.2 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
no3inds.3 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
no3inds.4 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
no3inds.5 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
no3inds.6 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
no3inds.7 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
no3inds.8 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
no3inds.9 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
no3inds.10 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
no3inds.i ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ∧ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜂 ) → 𝜑 ) )
Assertion no3inds ( ( 𝑋 No 𝑌 No 𝑍 No ) → 𝜆 )

Proof

Step Hyp Ref Expression
1 no3inds.1 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
2 no3inds.2 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
3 no3inds.3 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
4 no3inds.4 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
5 no3inds.5 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
6 no3inds.6 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
7 no3inds.7 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
8 no3inds.8 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
9 no3inds.9 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
10 no3inds.10 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
11 no3inds.i ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ∧ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜂 ) → 𝜑 ) )
12 eqid { ⟨ 𝑧 , 𝑤 ⟩ ∣ ( 𝑧 ∈ ( ( No × No ) × No ) ∧ 𝑤 ∈ ( ( No × No ) × No ) ∧ ( ( ( ( 1st ‘ ( 1st𝑧 ) ) { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 1st ‘ ( 1st𝑤 ) ) ∨ ( 1st ‘ ( 1st𝑧 ) ) = ( 1st ‘ ( 1st𝑤 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑧 ) ) { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd ‘ ( 1st𝑤 ) ) ∨ ( 2nd ‘ ( 1st𝑧 ) ) = ( 2nd ‘ ( 1st𝑤 ) ) ) ∧ ( ( 2nd𝑧 ) { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd𝑤 ) ∨ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) ∧ 𝑧𝑤 ) ) } = { ⟨ 𝑧 , 𝑤 ⟩ ∣ ( 𝑧 ∈ ( ( No × No ) × No ) ∧ 𝑤 ∈ ( ( No × No ) × No ) ∧ ( ( ( ( 1st ‘ ( 1st𝑧 ) ) { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 1st ‘ ( 1st𝑤 ) ) ∨ ( 1st ‘ ( 1st𝑧 ) ) = ( 1st ‘ ( 1st𝑤 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑧 ) ) { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd ‘ ( 1st𝑤 ) ) ∨ ( 2nd ‘ ( 1st𝑧 ) ) = ( 2nd ‘ ( 1st𝑤 ) ) ) ∧ ( ( 2nd𝑧 ) { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } ( 2nd𝑤 ) ∨ ( 2nd𝑧 ) = ( 2nd𝑤 ) ) ) ∧ 𝑧𝑤 ) ) }
13 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) }
14 13 lrrecfr { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No
15 13 lrrecpo { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No
16 13 lrrecse { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No
17 13 lrrecpred ( 𝑎 No → Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) = ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) )
18 17 3ad2ant1 ( ( 𝑎 No 𝑏 No 𝑐 No ) → Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) = ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) )
19 13 lrrecpred ( 𝑏 No → Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) = ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) )
20 19 3ad2ant2 ( ( 𝑎 No 𝑏 No 𝑐 No ) → Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) = ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) )
21 13 lrrecpred ( 𝑐 No → Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) = ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) )
22 21 3ad2ant3 ( ( 𝑎 No 𝑏 No 𝑐 No ) → Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) = ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) )
23 22 raleqdv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ) )
24 20 23 raleqbidv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ) )
25 18 24 raleqbidv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ) )
26 20 raleqdv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ) )
27 18 26 raleqbidv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ) )
28 22 raleqdv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) )
29 18 28 raleqbidv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) )
30 25 27 29 3anbi123d ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ) ↔ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ) )
31 18 raleqdv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ↔ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ) )
32 22 raleqdv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ) )
33 20 32 raleqbidv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ) )
34 20 raleqdv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ↔ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) )
35 31 33 34 3anbi123d ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ) ↔ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ) )
36 22 raleqdv ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜂 ↔ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜂 ) )
37 30 35 36 3anbi123d ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜂 ) ↔ ( ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜃 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜒 ∧ ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ ( ( L ‘ 𝑎 ) ∪ ( R ‘ 𝑎 ) ) 𝜓 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜏 ∧ ∀ 𝑒 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) 𝜎 ) ∧ ∀ 𝑓 ∈ ( ( L ‘ 𝑐 ) ∪ ( R ‘ 𝑐 ) ) 𝜂 ) ) )
38 37 11 sylbid ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝑐 ) 𝜂 ) → 𝜑 ) )
39 12 14 15 16 14 15 16 14 15 16 1 2 3 4 5 6 7 8 9 10 38 xpord3ind ( ( 𝑋 No 𝑌 No 𝑍 No ) → 𝜆 )