| Step | Hyp | Ref | Expression | 
						
							| 1 |  | no3inds.1 | ⊢ ( 𝑎  =  𝑑  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | no3inds.2 | ⊢ ( 𝑏  =  𝑒  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | no3inds.3 | ⊢ ( 𝑐  =  𝑓  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 4 |  | no3inds.4 | ⊢ ( 𝑎  =  𝑑  →  ( 𝜏  ↔  𝜃 ) ) | 
						
							| 5 |  | no3inds.5 | ⊢ ( 𝑏  =  𝑒  →  ( 𝜂  ↔  𝜏 ) ) | 
						
							| 6 |  | no3inds.6 | ⊢ ( 𝑏  =  𝑒  →  ( 𝜁  ↔  𝜃 ) ) | 
						
							| 7 |  | no3inds.7 | ⊢ ( 𝑐  =  𝑓  →  ( 𝜎  ↔  𝜏 ) ) | 
						
							| 8 |  | no3inds.8 | ⊢ ( 𝑎  =  𝑋  →  ( 𝜑  ↔  𝜌 ) ) | 
						
							| 9 |  | no3inds.9 | ⊢ ( 𝑏  =  𝑌  →  ( 𝜌  ↔  𝜇 ) ) | 
						
							| 10 |  | no3inds.10 | ⊢ ( 𝑐  =  𝑍  →  ( 𝜇  ↔  𝜆 ) ) | 
						
							| 11 |  | no3inds.i | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ( ( ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜃  ∧  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜒  ∧  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜁 )  ∧  ( ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) 𝜓  ∧  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜏  ∧  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜎 )  ∧  ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜂 )  →  𝜑 ) ) | 
						
							| 12 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } | 
						
							| 13 | 12 | lrrecfr | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Fr   No | 
						
							| 14 | 12 | lrrecpo | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Po   No | 
						
							| 15 | 12 | lrrecse | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Se   No | 
						
							| 16 | 12 | lrrecpred | ⊢ ( 𝑎  ∈   No   →  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 )  =  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 )  =  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ) | 
						
							| 18 | 12 | lrrecpred | ⊢ ( 𝑏  ∈   No   →  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 )  =  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 )  =  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ) | 
						
							| 20 | 12 | lrrecpred | ⊢ ( 𝑐  ∈   No   →  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 )  =  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) ) | 
						
							| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 )  =  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) ) | 
						
							| 22 | 21 | raleqdv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜃  ↔  ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜃 ) ) | 
						
							| 23 | 19 22 | raleqbidv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜃  ↔  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜃 ) ) | 
						
							| 24 | 17 23 | raleqbidv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜃  ↔  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜃 ) ) | 
						
							| 25 | 19 | raleqdv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜒  ↔  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜒 ) ) | 
						
							| 26 | 17 25 | raleqbidv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜒  ↔  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜒 ) ) | 
						
							| 27 | 21 | raleqdv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜁  ↔  ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜁 ) ) | 
						
							| 28 | 17 27 | raleqbidv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜁  ↔  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜁 ) ) | 
						
							| 29 | 24 26 28 | 3anbi123d | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜃  ∧  ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜒  ∧  ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜁 )  ↔  ( ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜃  ∧  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜒  ∧  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜁 ) ) ) | 
						
							| 30 | 17 | raleqdv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) 𝜓  ↔  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) 𝜓 ) ) | 
						
							| 31 | 21 | raleqdv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜏  ↔  ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜏 ) ) | 
						
							| 32 | 19 31 | raleqbidv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜏  ↔  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜏 ) ) | 
						
							| 33 | 19 | raleqdv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜎  ↔  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜎 ) ) | 
						
							| 34 | 30 32 33 | 3anbi123d | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) 𝜓  ∧  ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜏  ∧  ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜎 )  ↔  ( ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) 𝜓  ∧  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜏  ∧  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜎 ) ) ) | 
						
							| 35 | 21 | raleqdv | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜂  ↔  ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜂 ) ) | 
						
							| 36 | 29 34 35 | 3anbi123d | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ( ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜃  ∧  ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜒  ∧  ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜁 )  ∧  ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) 𝜓  ∧  ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜏  ∧  ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜎 )  ∧  ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜂 )  ↔  ( ( ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜃  ∧  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜒  ∧  ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜁 )  ∧  ( ∀ 𝑑  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) 𝜓  ∧  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜏  ∧  ∀ 𝑒  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) 𝜎 )  ∧  ∀ 𝑓  ∈  ( (  L  ‘ 𝑐 )  ∪  (  R  ‘ 𝑐 ) ) 𝜂 ) ) ) | 
						
							| 37 | 36 11 | sylbid | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No   ∧  𝑐  ∈   No  )  →  ( ( ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜃  ∧  ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜒  ∧  ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜁 )  ∧  ( ∀ 𝑑  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑎 ) 𝜓  ∧  ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜏  ∧  ∀ 𝑒  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑏 ) 𝜎 )  ∧  ∀ 𝑓  ∈  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝑐 ) 𝜂 )  →  𝜑 ) ) | 
						
							| 38 | 13 14 15 13 14 15 13 14 15 1 2 3 4 5 6 7 8 9 10 37 | xpord3ind | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑍  ∈   No  )  →  𝜆 ) |