Metamath Proof Explorer


Theorem xpord3ind

Description: Induction over the triple cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
xpord3ind.1 𝑅 Fr 𝐴
xpord3ind.2 𝑅 Po 𝐴
xpord3ind.3 𝑅 Se 𝐴
xpord3ind.4 𝑆 Fr 𝐵
xpord3ind.5 𝑆 Po 𝐵
xpord3ind.6 𝑆 Se 𝐵
xpord3ind.7 𝑇 Fr 𝐶
xpord3ind.8 𝑇 Po 𝐶
xpord3ind.9 𝑇 Se 𝐶
xpord3ind.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
xpord3ind.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
xpord3ind.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
xpord3ind.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
xpord3ind.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
xpord3ind.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
xpord3ind.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
xpord3ind.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
xpord3ind.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
xpord3ind.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
xpord3ind.i ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
Assertion xpord3ind ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝜆 )

Proof

Step Hyp Ref Expression
1 xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
2 xpord3ind.1 𝑅 Fr 𝐴
3 xpord3ind.2 𝑅 Po 𝐴
4 xpord3ind.3 𝑅 Se 𝐴
5 xpord3ind.4 𝑆 Fr 𝐵
6 xpord3ind.5 𝑆 Po 𝐵
7 xpord3ind.6 𝑆 Se 𝐵
8 xpord3ind.7 𝑇 Fr 𝐶
9 xpord3ind.8 𝑇 Po 𝐶
10 xpord3ind.9 𝑇 Se 𝐶
11 xpord3ind.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
12 xpord3ind.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
13 xpord3ind.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
14 xpord3ind.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
15 xpord3ind.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
16 xpord3ind.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
17 xpord3ind.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
18 xpord3ind.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
19 xpord3ind.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
20 xpord3ind.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
21 xpord3ind.i ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
22 2 a1i ( ⊤ → 𝑅 Fr 𝐴 )
23 5 a1i ( ⊤ → 𝑆 Fr 𝐵 )
24 8 a1i ( ⊤ → 𝑇 Fr 𝐶 )
25 1 22 23 24 frxp3 ( ⊤ → 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
26 25 mptru 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 )
27 3 a1i ( ⊤ → 𝑅 Po 𝐴 )
28 6 a1i ( ⊤ → 𝑆 Po 𝐵 )
29 9 a1i ( ⊤ → 𝑇 Po 𝐶 )
30 1 27 28 29 poxp3 ( ⊤ → 𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
31 30 mptru 𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 )
32 4 a1i ( ⊤ → 𝑅 Se 𝐴 )
33 7 a1i ( ⊤ → 𝑆 Se 𝐵 )
34 10 a1i ( ⊤ → 𝑇 Se 𝐶 )
35 1 32 33 34 sexp3 ( ⊤ → 𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
36 35 mptru 𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 )
37 26 31 36 3pm3.2i ( 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
38 1 xpord3pred ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ } ) )
39 38 eleq2d ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) ↔ ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ } ) ) )
40 39 imbi1d ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) → 𝜃 ) ↔ ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ } ) → 𝜃 ) ) )
41 eldifsn ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ } ) ↔ ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ≠ ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) )
42 ot2elxp ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ↔ ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) )
43 vex 𝑑 ∈ V
44 vex 𝑒 ∈ V
45 vex 𝑓 ∈ V
46 43 44 45 otthne ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ≠ ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ↔ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) )
47 42 46 anbi12i ( ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ≠ ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) )
48 41 47 bitri ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ } ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) )
49 48 imbi1i ( ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ } ) → 𝜃 ) ↔ ( ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) → 𝜃 ) )
50 impexp ( ( ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ) → 𝜃 ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
51 49 50 bitr2i ( ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ↔ ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ } ) → 𝜃 ) )
52 40 51 bitr4di ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) → 𝜃 ) ↔ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ) )
53 52 albidv ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ∀ 𝑓 ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) → 𝜃 ) ↔ ∀ 𝑓 ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ) )
54 53 2albidv ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ∀ 𝑑𝑒𝑓 ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) → 𝜃 ) ↔ ∀ 𝑑𝑒𝑓 ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) ) )
55 r3al ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑𝑒𝑓 ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
56 54 55 bitr4di ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ∀ 𝑑𝑒𝑓 ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) → 𝜃 ) ↔ ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
57 ssun1 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } )
58 ssralv ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
59 57 58 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
60 ssun1 Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } )
61 ssralv ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) → ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
62 60 61 ax-mp ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
63 ssun1 Pred ( 𝑇 , 𝐶 , 𝑐 ) ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } )
64 ssralv ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) → ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
65 63 64 ax-mp ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
66 65 ralimi ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
67 62 66 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
68 67 ralimi ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
69 predpoirr ( 𝑇 Po 𝐶 → ¬ 𝑐 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) )
70 9 69 ax-mp ¬ 𝑐 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 )
71 eleq1w ( 𝑓 = 𝑐 → ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ↔ 𝑐 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ) )
72 70 71 mtbiri ( 𝑓 = 𝑐 → ¬ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) )
73 72 necon2ai ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → 𝑓𝑐 )
74 73 3mix3d ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) )
75 pm2.27 ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → 𝜃 ) )
76 74 75 syl ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → 𝜃 ) )
77 76 ralimia ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 )
78 77 2ralimi ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 )
79 59 68 78 3syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 )
80 ssun2 { 𝑐 } ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } )
81 ssralv ( { 𝑐 } ⊆ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) → ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
82 80 81 ax-mp ( ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
83 82 ralimi ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
84 62 83 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
85 84 ralimi ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
86 59 85 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
87 vex 𝑐 ∈ V
88 biidd ( 𝑓 = 𝑐 → ( 𝑑𝑎𝑑𝑎 ) )
89 biidd ( 𝑓 = 𝑐 → ( 𝑒𝑏𝑒𝑏 ) )
90 neeq1 ( 𝑓 = 𝑐 → ( 𝑓𝑐𝑐𝑐 ) )
91 88 89 90 3orbi123d ( 𝑓 = 𝑐 → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) ) )
92 13 bicomd ( 𝑐 = 𝑓 → ( 𝜃𝜒 ) )
93 92 equcoms ( 𝑓 = 𝑐 → ( 𝜃𝜒 ) )
94 91 93 imbi12d ( 𝑓 = 𝑐 → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) ) )
95 87 94 ralsn ( ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
96 95 2ralbii ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
97 86 96 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
98 predpoirr ( 𝑆 Po 𝐵 → ¬ 𝑏 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) )
99 6 98 ax-mp ¬ 𝑏 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 )
100 eleq1w ( 𝑒 = 𝑏 → ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ↔ 𝑏 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ) )
101 99 100 mtbiri ( 𝑒 = 𝑏 → ¬ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) )
102 101 necon2ai ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) → 𝑒𝑏 )
103 102 3mix2d ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) → ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) )
104 pm2.27 ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → ( ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → 𝜒 ) )
105 103 104 syl ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) → ( ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → 𝜒 ) )
106 105 ralimia ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 )
107 106 ralimi ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 )
108 97 107 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 )
109 ssun2 { 𝑏 } ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } )
110 ssralv ( { 𝑏 } ⊆ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) → ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
111 109 110 ax-mp ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
112 65 ralimi ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
113 111 112 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
114 113 ralimi ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
115 59 114 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
116 vex 𝑏 ∈ V
117 biidd ( 𝑒 = 𝑏 → ( 𝑑𝑎𝑑𝑎 ) )
118 neeq1 ( 𝑒 = 𝑏 → ( 𝑒𝑏𝑏𝑏 ) )
119 biidd ( 𝑒 = 𝑏 → ( 𝑓𝑐𝑓𝑐 ) )
120 117 118 119 3orbi123d ( 𝑒 = 𝑏 → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) ) )
121 equcom ( 𝑏 = 𝑒𝑒 = 𝑏 )
122 bicom ( ( 𝜁𝜃 ) ↔ ( 𝜃𝜁 ) )
123 16 121 122 3imtr3i ( 𝑒 = 𝑏 → ( 𝜃𝜁 ) )
124 120 123 imbi12d ( 𝑒 = 𝑏 → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) ) )
125 124 ralbidv ( 𝑒 = 𝑏 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) ) )
126 116 125 ralsn ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) )
127 126 ralbii ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) )
128 115 127 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) )
129 73 3mix3d ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) )
130 pm2.27 ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → ( ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → 𝜁 ) )
131 129 130 syl ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → 𝜁 ) )
132 131 ralimia ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 )
133 132 ralimi ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑏𝑏𝑓𝑐 ) → 𝜁 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 )
134 128 133 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 )
135 79 108 134 3jca ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) )
136 82 ralimi ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
137 111 136 syl ( ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
138 137 ralimi ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
139 59 138 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
140 95 ralbii ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ { 𝑏 } ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) )
141 biidd ( 𝑒 = 𝑏 → ( 𝑐𝑐𝑐𝑐 ) )
142 117 118 141 3orbi123d ( 𝑒 = 𝑏 → ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) ↔ ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) ) )
143 12 bicomd ( 𝑏 = 𝑒 → ( 𝜒𝜓 ) )
144 143 equcoms ( 𝑒 = 𝑏 → ( 𝜒𝜓 ) )
145 142 144 imbi12d ( 𝑒 = 𝑏 → ( ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) ) )
146 116 145 ralsn ( ∀ 𝑒 ∈ { 𝑏 } ( ( 𝑑𝑎𝑒𝑏𝑐𝑐 ) → 𝜒 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
147 140 146 bitri ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
148 147 ralbii ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
149 139 148 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) )
150 predpoirr ( 𝑅 Po 𝐴 → ¬ 𝑎 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) )
151 3 150 ax-mp ¬ 𝑎 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 )
152 eleq1w ( 𝑑 = 𝑎 → ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ↔ 𝑎 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) )
153 151 152 mtbiri ( 𝑑 = 𝑎 → ¬ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) )
154 153 necon2ai ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) → 𝑑𝑎 )
155 154 3mix1d ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) → ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) )
156 pm2.27 ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → ( ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) → 𝜓 ) )
157 155 156 syl ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) → ( ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) → 𝜓 ) )
158 157 ralimia ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ( ( 𝑑𝑎𝑏𝑏𝑐𝑐 ) → 𝜓 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 )
159 149 158 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 )
160 ssun2 { 𝑎 } ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } )
161 ssralv ( { 𝑎 } ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ) )
162 160 161 ax-mp ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
163 67 ralimi ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
164 162 163 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
165 vex 𝑎 ∈ V
166 neeq1 ( 𝑑 = 𝑎 → ( 𝑑𝑎𝑎𝑎 ) )
167 biidd ( 𝑑 = 𝑎 → ( 𝑒𝑏𝑒𝑏 ) )
168 biidd ( 𝑑 = 𝑎 → ( 𝑓𝑐𝑓𝑐 ) )
169 166 167 168 3orbi123d ( 𝑑 = 𝑎 → ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) ) )
170 14 equcoms ( 𝑑 = 𝑎 → ( 𝜏𝜃 ) )
171 170 bicomd ( 𝑑 = 𝑎 → ( 𝜃𝜏 ) )
172 169 171 imbi12d ( 𝑑 = 𝑎 → ( ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
173 172 2ralbidv ( 𝑑 = 𝑎 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
174 165 173 ralsn ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
175 164 174 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
176 73 3mix3d ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) )
177 pm2.27 ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → 𝜏 ) )
178 176 177 syl ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → 𝜏 ) )
179 178 ralimia ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 )
180 179 ralimi ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 )
181 175 180 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 )
182 84 ralimi ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
183 162 182 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
184 172 2ralbidv ( 𝑑 = 𝑎 → ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
185 165 184 ralsn ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
186 biidd ( 𝑓 = 𝑐 → ( 𝑎𝑎𝑎𝑎 ) )
187 186 89 90 3orbi123d ( 𝑓 = 𝑐 → ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) ) )
188 17 bicomd ( 𝑐 = 𝑓 → ( 𝜏𝜎 ) )
189 188 equcoms ( 𝑓 = 𝑐 → ( 𝜏𝜎 ) )
190 187 189 imbi12d ( 𝑓 = 𝑐 → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) ) )
191 87 190 ralsn ( ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
192 191 ralbii ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
193 185 192 bitri ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ { 𝑐 } ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
194 183 193 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) )
195 102 3mix2d ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) → ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) )
196 pm2.27 ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → ( ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) → 𝜎 ) )
197 195 196 syl ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) → ( ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) → 𝜎 ) )
198 197 ralimia ( ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ( ( 𝑎𝑎𝑒𝑏𝑐𝑐 ) → 𝜎 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 )
199 194 198 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 )
200 159 181 199 3jca ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) )
201 113 ralimi ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
202 162 201 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) )
203 172 2ralbidv ( 𝑑 = 𝑎 → ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ) )
204 165 203 ralsn ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) )
205 biidd ( 𝑒 = 𝑏 → ( 𝑎𝑎𝑎𝑎 ) )
206 205 118 119 3orbi123d ( 𝑒 = 𝑏 → ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) ↔ ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) ) )
207 15 equcoms ( 𝑒 = 𝑏 → ( 𝜂𝜏 ) )
208 207 bicomd ( 𝑒 = 𝑏 → ( 𝜏𝜂 ) )
209 206 208 imbi12d ( 𝑒 = 𝑏 → ( ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) ) )
210 209 ralbidv ( 𝑒 = 𝑏 → ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) ) )
211 116 210 ralsn ( ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑒𝑏𝑓𝑐 ) → 𝜏 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) )
212 204 211 bitri ( ∀ 𝑑 ∈ { 𝑎 } ∀ 𝑒 ∈ { 𝑏 } ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) ↔ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) )
213 202 212 sylib ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) )
214 73 3mix3d ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) )
215 pm2.27 ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → ( ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) → 𝜂 ) )
216 214 215 syl ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) → ( ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) → 𝜂 ) )
217 216 ralimia ( ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ( ( 𝑎𝑎𝑏𝑏𝑓𝑐 ) → 𝜂 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 )
218 213 217 syl ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 )
219 135 200 218 3jca ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) )
220 219 21 syl5 ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ∀ 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∀ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∀ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ( ( 𝑑𝑎𝑒𝑏𝑓𝑐 ) → 𝜃 ) → 𝜑 ) )
221 56 220 sylbid ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ∀ 𝑑𝑒𝑓 ( ⟨ ⟨ 𝑑 , 𝑒 ⟩ , 𝑓 ⟩ ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ) → 𝜃 ) → 𝜑 ) )
222 221 11 12 13 18 19 20 frpoins3xp3g ( ( ( 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ∧ ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) ) → 𝜆 )
223 37 222 mpan ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝜆 )