Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
⊢ 𝑈 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ( 1st ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑇 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
2 |
|
sexp3.1 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
3 |
|
sexp3.2 |
⊢ ( 𝜑 → 𝑆 Se 𝐵 ) |
4 |
|
sexp3.3 |
⊢ ( 𝜑 → 𝑇 Se 𝐶 ) |
5 |
|
elxpxp |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐶 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) |
6 |
|
df-3an |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐶 ) ) |
7 |
1
|
xpord3pred |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 } ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 } ) ) |
9 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑎 ∈ 𝐴 ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑅 Se 𝐴 ) |
11 |
|
setlikespec |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ∈ V ) |
12 |
9 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ∈ V ) |
13 |
|
snex |
⊢ { 𝑎 } ∈ V |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → { 𝑎 } ∈ V ) |
15 |
12 14
|
unexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∈ V ) |
16 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑏 ∈ 𝐵 ) |
17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑆 Se 𝐵 ) |
18 |
|
setlikespec |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑆 Se 𝐵 ) → Pred ( 𝑆 , 𝐵 , 𝑏 ) ∈ V ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → Pred ( 𝑆 , 𝐵 , 𝑏 ) ∈ V ) |
20 |
|
snex |
⊢ { 𝑏 } ∈ V |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → { 𝑏 } ∈ V ) |
22 |
19 21
|
unexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∈ V ) |
23 |
15 22
|
xpexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∈ V ) |
24 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑐 ∈ 𝐶 ) |
25 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → 𝑇 Se 𝐶 ) |
26 |
|
setlikespec |
⊢ ( ( 𝑐 ∈ 𝐶 ∧ 𝑇 Se 𝐶 ) → Pred ( 𝑇 , 𝐶 , 𝑐 ) ∈ V ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → Pred ( 𝑇 , 𝐶 , 𝑐 ) ∈ V ) |
28 |
|
snex |
⊢ { 𝑐 } ∈ V |
29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → { 𝑐 } ∈ V ) |
30 |
27 29
|
unexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ∈ V ) |
31 |
23 30
|
xpexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∈ V ) |
32 |
31
|
difexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 } ) ∈ V ) |
33 |
8 32
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ∈ V ) |
34 |
|
predeq3 |
⊢ ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) = Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → ( Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ↔ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ∈ V ) ) |
36 |
35
|
biimprd |
⊢ ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → ( Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ∈ V → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
37 |
36
|
com12 |
⊢ ( Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ∈ V → ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
38 |
33 37
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
39 |
6 38
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐶 ) ) → ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
40 |
39
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
41 |
40
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∈ 𝐶 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
42 |
41
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐶 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
43 |
5 42
|
syl5bi |
⊢ ( 𝜑 → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) ) |
44 |
43
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) |
45 |
|
dfse3 |
⊢ ( 𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∀ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) ∈ V ) |
46 |
44 45
|
sylibr |
⊢ ( 𝜑 → 𝑈 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |