Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
|- U = { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } |
2 |
|
sexp3.1 |
|- ( ph -> R Se A ) |
3 |
|
sexp3.2 |
|- ( ph -> S Se B ) |
4 |
|
sexp3.3 |
|- ( ph -> T Se C ) |
5 |
|
elxpxp |
|- ( p e. ( ( A X. B ) X. C ) <-> E. a e. A E. b e. B E. c e. C p = <. <. a , b >. , c >. ) |
6 |
|
df-3an |
|- ( ( a e. A /\ b e. B /\ c e. C ) <-> ( ( a e. A /\ b e. B ) /\ c e. C ) ) |
7 |
1
|
xpord3pred |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) |
9 |
|
simpr1 |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> a e. A ) |
10 |
2
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> R Se A ) |
11 |
|
setlikespec |
|- ( ( a e. A /\ R Se A ) -> Pred ( R , A , a ) e. _V ) |
12 |
9 10 11
|
syl2anc |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> Pred ( R , A , a ) e. _V ) |
13 |
|
snex |
|- { a } e. _V |
14 |
13
|
a1i |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> { a } e. _V ) |
15 |
12 14
|
unexd |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( Pred ( R , A , a ) u. { a } ) e. _V ) |
16 |
|
simpr2 |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> b e. B ) |
17 |
3
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> S Se B ) |
18 |
|
setlikespec |
|- ( ( b e. B /\ S Se B ) -> Pred ( S , B , b ) e. _V ) |
19 |
16 17 18
|
syl2anc |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> Pred ( S , B , b ) e. _V ) |
20 |
|
snex |
|- { b } e. _V |
21 |
20
|
a1i |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> { b } e. _V ) |
22 |
19 21
|
unexd |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( Pred ( S , B , b ) u. { b } ) e. _V ) |
23 |
15 22
|
xpexd |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) e. _V ) |
24 |
|
simpr3 |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> c e. C ) |
25 |
4
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> T Se C ) |
26 |
|
setlikespec |
|- ( ( c e. C /\ T Se C ) -> Pred ( T , C , c ) e. _V ) |
27 |
24 25 26
|
syl2anc |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> Pred ( T , C , c ) e. _V ) |
28 |
|
snex |
|- { c } e. _V |
29 |
28
|
a1i |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> { c } e. _V ) |
30 |
27 29
|
unexd |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( Pred ( T , C , c ) u. { c } ) e. _V ) |
31 |
23 30
|
xpexd |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) e. _V ) |
32 |
31
|
difexd |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) e. _V ) |
33 |
8 32
|
eqeltrd |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) e. _V ) |
34 |
|
predeq3 |
|- ( p = <. <. a , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , p ) = Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) ) |
35 |
34
|
eleq1d |
|- ( p = <. <. a , b >. , c >. -> ( Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V <-> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) e. _V ) ) |
36 |
35
|
biimprd |
|- ( p = <. <. a , b >. , c >. -> ( Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) e. _V -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
37 |
36
|
com12 |
|- ( Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) e. _V -> ( p = <. <. a , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
38 |
33 37
|
syl |
|- ( ( ph /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( p = <. <. a , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
39 |
6 38
|
sylan2br |
|- ( ( ph /\ ( ( a e. A /\ b e. B ) /\ c e. C ) ) -> ( p = <. <. a , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
40 |
39
|
anassrs |
|- ( ( ( ph /\ ( a e. A /\ b e. B ) ) /\ c e. C ) -> ( p = <. <. a , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
41 |
40
|
rexlimdva |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( E. c e. C p = <. <. a , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
42 |
41
|
rexlimdvva |
|- ( ph -> ( E. a e. A E. b e. B E. c e. C p = <. <. a , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
43 |
5 42
|
syl5bi |
|- ( ph -> ( p e. ( ( A X. B ) X. C ) -> Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) ) |
44 |
43
|
ralrimiv |
|- ( ph -> A. p e. ( ( A X. B ) X. C ) Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) |
45 |
|
dfse3 |
|- ( U Se ( ( A X. B ) X. C ) <-> A. p e. ( ( A X. B ) X. C ) Pred ( U , ( ( A X. B ) X. C ) , p ) e. _V ) |
46 |
44 45
|
sylibr |
|- ( ph -> U Se ( ( A X. B ) X. C ) ) |