| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpord3.1 |
|- U = { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } |
| 2 |
|
oteq1 |
|- ( a = X -> <. a , b , c >. = <. X , b , c >. ) |
| 3 |
|
predeq3 |
|- ( <. a , b , c >. = <. X , b , c >. -> Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. X , b , c >. ) ) |
| 4 |
2 3
|
syl |
|- ( a = X -> Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. X , b , c >. ) ) |
| 5 |
|
predeq3 |
|- ( a = X -> Pred ( R , A , a ) = Pred ( R , A , X ) ) |
| 6 |
|
sneq |
|- ( a = X -> { a } = { X } ) |
| 7 |
5 6
|
uneq12d |
|- ( a = X -> ( Pred ( R , A , a ) u. { a } ) = ( Pred ( R , A , X ) u. { X } ) ) |
| 8 |
7
|
xpeq1d |
|- ( a = X -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) = ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) ) |
| 9 |
8
|
xpeq1d |
|- ( a = X -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) ) |
| 10 |
2
|
sneqd |
|- ( a = X -> { <. a , b , c >. } = { <. X , b , c >. } ) |
| 11 |
9 10
|
difeq12d |
|- ( a = X -> ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , b , c >. } ) ) |
| 12 |
4 11
|
eqeq12d |
|- ( a = X -> ( Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) <-> Pred ( U , ( ( A X. B ) X. C ) , <. X , b , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , b , c >. } ) ) ) |
| 13 |
|
oteq2 |
|- ( b = Y -> <. X , b , c >. = <. X , Y , c >. ) |
| 14 |
|
predeq3 |
|- ( <. X , b , c >. = <. X , Y , c >. -> Pred ( U , ( ( A X. B ) X. C ) , <. X , b , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , c >. ) ) |
| 15 |
13 14
|
syl |
|- ( b = Y -> Pred ( U , ( ( A X. B ) X. C ) , <. X , b , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , c >. ) ) |
| 16 |
|
predeq3 |
|- ( b = Y -> Pred ( S , B , b ) = Pred ( S , B , Y ) ) |
| 17 |
|
sneq |
|- ( b = Y -> { b } = { Y } ) |
| 18 |
16 17
|
uneq12d |
|- ( b = Y -> ( Pred ( S , B , b ) u. { b } ) = ( Pred ( S , B , Y ) u. { Y } ) ) |
| 19 |
18
|
xpeq2d |
|- ( b = Y -> ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) = ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) ) |
| 20 |
19
|
xpeq1d |
|- ( b = Y -> ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) ) |
| 21 |
13
|
sneqd |
|- ( b = Y -> { <. X , b , c >. } = { <. X , Y , c >. } ) |
| 22 |
20 21
|
difeq12d |
|- ( b = Y -> ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , b , c >. } ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , Y , c >. } ) ) |
| 23 |
15 22
|
eqeq12d |
|- ( b = Y -> ( Pred ( U , ( ( A X. B ) X. C ) , <. X , b , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , b , c >. } ) <-> Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , Y , c >. } ) ) ) |
| 24 |
|
oteq3 |
|- ( c = Z -> <. X , Y , c >. = <. X , Y , Z >. ) |
| 25 |
|
predeq3 |
|- ( <. X , Y , c >. = <. X , Y , Z >. -> Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , Z >. ) ) |
| 26 |
24 25
|
syl |
|- ( c = Z -> Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , Z >. ) ) |
| 27 |
|
predeq3 |
|- ( c = Z -> Pred ( T , C , c ) = Pred ( T , C , Z ) ) |
| 28 |
|
sneq |
|- ( c = Z -> { c } = { Z } ) |
| 29 |
27 28
|
uneq12d |
|- ( c = Z -> ( Pred ( T , C , c ) u. { c } ) = ( Pred ( T , C , Z ) u. { Z } ) ) |
| 30 |
29
|
xpeq2d |
|- ( c = Z -> ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) ) |
| 31 |
24
|
sneqd |
|- ( c = Z -> { <. X , Y , c >. } = { <. X , Y , Z >. } ) |
| 32 |
30 31
|
difeq12d |
|- ( c = Z -> ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , Y , c >. } ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) \ { <. X , Y , Z >. } ) ) |
| 33 |
26 32
|
eqeq12d |
|- ( c = Z -> ( Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. X , Y , c >. } ) <-> Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , Z >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) \ { <. X , Y , Z >. } ) ) ) |
| 34 |
|
el2xptp |
|- ( q e. ( ( A X. B ) X. C ) <-> E. d e. A E. e e. B E. f e. C q = <. d , e , f >. ) |
| 35 |
|
df-3an |
|- ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
| 36 |
|
simplrl |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> d e. A ) |
| 37 |
|
simplrr |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> e e. B ) |
| 38 |
|
simpr |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> f e. C ) |
| 39 |
36 37 38
|
3jca |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( d e. A /\ e e. B /\ f e. C ) ) |
| 40 |
|
simpll |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( a e. A /\ b e. B /\ c e. C ) ) |
| 41 |
39 40
|
jca |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) ) |
| 42 |
41
|
biantrurd |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) <-> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) ) |
| 43 |
36
|
biantrurd |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( d R a <-> ( d e. A /\ d R a ) ) ) |
| 44 |
43
|
orbi1d |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( d R a \/ d = a ) <-> ( ( d e. A /\ d R a ) \/ d = a ) ) ) |
| 45 |
37
|
biantrurd |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( e S b <-> ( e e. B /\ e S b ) ) ) |
| 46 |
45
|
orbi1d |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( e S b \/ e = b ) <-> ( ( e e. B /\ e S b ) \/ e = b ) ) ) |
| 47 |
38
|
biantrurd |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( f T c <-> ( f e. C /\ f T c ) ) ) |
| 48 |
47
|
orbi1d |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( f T c \/ f = c ) <-> ( ( f e. C /\ f T c ) \/ f = c ) ) ) |
| 49 |
44 46 48
|
3anbi123d |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) <-> ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) ) |
| 50 |
49
|
anbi1d |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
| 51 |
42 50
|
bitr3d |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
| 52 |
35 51
|
bitrid |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
| 53 |
|
breq1 |
|- ( q = <. d , e , f >. -> ( q U <. a , b , c >. <-> <. d , e , f >. U <. a , b , c >. ) ) |
| 54 |
1
|
xpord3lem |
|- ( <. d , e , f >. U <. a , b , c >. <-> ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
| 55 |
53 54
|
bitrdi |
|- ( q = <. d , e , f >. -> ( q U <. a , b , c >. <-> ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) ) |
| 56 |
|
eleq1 |
|- ( q = <. d , e , f >. -> ( q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) <-> <. d , e , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) |
| 57 |
|
eldifsn |
|- ( <. d , e , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) <-> ( <. d , e , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) /\ <. d , e , f >. =/= <. a , b , c >. ) ) |
| 58 |
|
otelxp |
|- ( <. d , e , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) <-> ( d e. ( Pred ( R , A , a ) u. { a } ) /\ e e. ( Pred ( S , B , b ) u. { b } ) /\ f e. ( Pred ( T , C , c ) u. { c } ) ) ) |
| 59 |
|
elun |
|- ( d e. ( Pred ( R , A , a ) u. { a } ) <-> ( d e. Pred ( R , A , a ) \/ d e. { a } ) ) |
| 60 |
|
vex |
|- d e. _V |
| 61 |
60
|
elpred |
|- ( a e. _V -> ( d e. Pred ( R , A , a ) <-> ( d e. A /\ d R a ) ) ) |
| 62 |
61
|
elv |
|- ( d e. Pred ( R , A , a ) <-> ( d e. A /\ d R a ) ) |
| 63 |
|
velsn |
|- ( d e. { a } <-> d = a ) |
| 64 |
62 63
|
orbi12i |
|- ( ( d e. Pred ( R , A , a ) \/ d e. { a } ) <-> ( ( d e. A /\ d R a ) \/ d = a ) ) |
| 65 |
59 64
|
bitri |
|- ( d e. ( Pred ( R , A , a ) u. { a } ) <-> ( ( d e. A /\ d R a ) \/ d = a ) ) |
| 66 |
|
elun |
|- ( e e. ( Pred ( S , B , b ) u. { b } ) <-> ( e e. Pred ( S , B , b ) \/ e e. { b } ) ) |
| 67 |
|
vex |
|- e e. _V |
| 68 |
67
|
elpred |
|- ( b e. _V -> ( e e. Pred ( S , B , b ) <-> ( e e. B /\ e S b ) ) ) |
| 69 |
68
|
elv |
|- ( e e. Pred ( S , B , b ) <-> ( e e. B /\ e S b ) ) |
| 70 |
|
velsn |
|- ( e e. { b } <-> e = b ) |
| 71 |
69 70
|
orbi12i |
|- ( ( e e. Pred ( S , B , b ) \/ e e. { b } ) <-> ( ( e e. B /\ e S b ) \/ e = b ) ) |
| 72 |
66 71
|
bitri |
|- ( e e. ( Pred ( S , B , b ) u. { b } ) <-> ( ( e e. B /\ e S b ) \/ e = b ) ) |
| 73 |
|
elun |
|- ( f e. ( Pred ( T , C , c ) u. { c } ) <-> ( f e. Pred ( T , C , c ) \/ f e. { c } ) ) |
| 74 |
|
vex |
|- f e. _V |
| 75 |
74
|
elpred |
|- ( c e. _V -> ( f e. Pred ( T , C , c ) <-> ( f e. C /\ f T c ) ) ) |
| 76 |
75
|
elv |
|- ( f e. Pred ( T , C , c ) <-> ( f e. C /\ f T c ) ) |
| 77 |
|
velsn |
|- ( f e. { c } <-> f = c ) |
| 78 |
76 77
|
orbi12i |
|- ( ( f e. Pred ( T , C , c ) \/ f e. { c } ) <-> ( ( f e. C /\ f T c ) \/ f = c ) ) |
| 79 |
73 78
|
bitri |
|- ( f e. ( Pred ( T , C , c ) u. { c } ) <-> ( ( f e. C /\ f T c ) \/ f = c ) ) |
| 80 |
65 72 79
|
3anbi123i |
|- ( ( d e. ( Pred ( R , A , a ) u. { a } ) /\ e e. ( Pred ( S , B , b ) u. { b } ) /\ f e. ( Pred ( T , C , c ) u. { c } ) ) <-> ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) |
| 81 |
58 80
|
bitri |
|- ( <. d , e , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) <-> ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) |
| 82 |
60 67 74
|
otthne |
|- ( <. d , e , f >. =/= <. a , b , c >. <-> ( d =/= a \/ e =/= b \/ f =/= c ) ) |
| 83 |
81 82
|
anbi12i |
|- ( ( <. d , e , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) /\ <. d , e , f >. =/= <. a , b , c >. ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) |
| 84 |
57 83
|
bitri |
|- ( <. d , e , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) |
| 85 |
56 84
|
bitrdi |
|- ( q = <. d , e , f >. -> ( q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
| 86 |
55 85
|
bibi12d |
|- ( q = <. d , e , f >. -> ( ( q U <. a , b , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) <-> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) ) |
| 87 |
52 86
|
syl5ibrcom |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( q = <. d , e , f >. -> ( q U <. a , b , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) ) |
| 88 |
87
|
rexlimdva |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) -> ( E. f e. C q = <. d , e , f >. -> ( q U <. a , b , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) ) |
| 89 |
88
|
rexlimdvva |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( E. d e. A E. e e. B E. f e. C q = <. d , e , f >. -> ( q U <. a , b , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) ) |
| 90 |
34 89
|
biimtrid |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( q e. ( ( A X. B ) X. C ) -> ( q U <. a , b , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) ) |
| 91 |
90
|
pm5.32d |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( q e. ( ( A X. B ) X. C ) /\ q U <. a , b , c >. ) <-> ( q e. ( ( A X. B ) X. C ) /\ q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) ) |
| 92 |
|
otex |
|- <. a , b , c >. e. _V |
| 93 |
|
vex |
|- q e. _V |
| 94 |
93
|
elpred |
|- ( <. a , b , c >. e. _V -> ( q e. Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) <-> ( q e. ( ( A X. B ) X. C ) /\ q U <. a , b , c >. ) ) ) |
| 95 |
92 94
|
ax-mp |
|- ( q e. Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) <-> ( q e. ( ( A X. B ) X. C ) /\ q U <. a , b , c >. ) ) |
| 96 |
|
elin |
|- ( q e. ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) <-> ( q e. ( ( A X. B ) X. C ) /\ q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) |
| 97 |
91 95 96
|
3bitr4g |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( q e. Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) <-> q e. ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) ) |
| 98 |
97
|
eqrdv |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) = ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) ) |
| 99 |
|
predss |
|- Pred ( R , A , a ) C_ A |
| 100 |
99
|
a1i |
|- ( a e. A -> Pred ( R , A , a ) C_ A ) |
| 101 |
|
snssi |
|- ( a e. A -> { a } C_ A ) |
| 102 |
100 101
|
unssd |
|- ( a e. A -> ( Pred ( R , A , a ) u. { a } ) C_ A ) |
| 103 |
102
|
3ad2ant1 |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( Pred ( R , A , a ) u. { a } ) C_ A ) |
| 104 |
|
predss |
|- Pred ( S , B , b ) C_ B |
| 105 |
104
|
a1i |
|- ( b e. B -> Pred ( S , B , b ) C_ B ) |
| 106 |
|
snssi |
|- ( b e. B -> { b } C_ B ) |
| 107 |
105 106
|
unssd |
|- ( b e. B -> ( Pred ( S , B , b ) u. { b } ) C_ B ) |
| 108 |
107
|
3ad2ant2 |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( Pred ( S , B , b ) u. { b } ) C_ B ) |
| 109 |
|
xpss12 |
|- ( ( ( Pred ( R , A , a ) u. { a } ) C_ A /\ ( Pred ( S , B , b ) u. { b } ) C_ B ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) ) |
| 110 |
103 108 109
|
syl2anc |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) ) |
| 111 |
|
predss |
|- Pred ( T , C , c ) C_ C |
| 112 |
111
|
a1i |
|- ( c e. C -> Pred ( T , C , c ) C_ C ) |
| 113 |
|
snssi |
|- ( c e. C -> { c } C_ C ) |
| 114 |
112 113
|
unssd |
|- ( c e. C -> ( Pred ( T , C , c ) u. { c } ) C_ C ) |
| 115 |
114
|
3ad2ant3 |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( Pred ( T , C , c ) u. { c } ) C_ C ) |
| 116 |
|
xpss12 |
|- ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) /\ ( Pred ( T , C , c ) u. { c } ) C_ C ) -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) C_ ( ( A X. B ) X. C ) ) |
| 117 |
110 115 116
|
syl2anc |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) C_ ( ( A X. B ) X. C ) ) |
| 118 |
117
|
ssdifssd |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) C_ ( ( A X. B ) X. C ) ) |
| 119 |
|
sseqin2 |
|- ( ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) C_ ( ( A X. B ) X. C ) <-> ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) |
| 120 |
118 119
|
sylib |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) |
| 121 |
98 120
|
eqtrd |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> Pred ( U , ( ( A X. B ) X. C ) , <. a , b , c >. ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. a , b , c >. } ) ) |
| 122 |
12 23 33 121
|
vtocl3ga |
|- ( ( X e. A /\ Y e. B /\ Z e. C ) -> Pred ( U , ( ( A X. B ) X. C ) , <. X , Y , Z >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) \ { <. X , Y , Z >. } ) ) |