Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
|- U = { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } |
2 |
|
opeq1 |
|- ( a = X -> <. a , b >. = <. X , b >. ) |
3 |
2
|
opeq1d |
|- ( a = X -> <. <. a , b >. , c >. = <. <. X , b >. , c >. ) |
4 |
|
predeq3 |
|- ( <. <. a , b >. , c >. = <. <. X , b >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. <. X , b >. , c >. ) ) |
5 |
3 4
|
syl |
|- ( a = X -> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. <. X , b >. , c >. ) ) |
6 |
|
predeq3 |
|- ( a = X -> Pred ( R , A , a ) = Pred ( R , A , X ) ) |
7 |
|
sneq |
|- ( a = X -> { a } = { X } ) |
8 |
6 7
|
uneq12d |
|- ( a = X -> ( Pred ( R , A , a ) u. { a } ) = ( Pred ( R , A , X ) u. { X } ) ) |
9 |
8
|
xpeq1d |
|- ( a = X -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) = ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) ) |
10 |
9
|
xpeq1d |
|- ( a = X -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) ) |
11 |
3
|
sneqd |
|- ( a = X -> { <. <. a , b >. , c >. } = { <. <. X , b >. , c >. } ) |
12 |
10 11
|
difeq12d |
|- ( a = X -> ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , b >. , c >. } ) ) |
13 |
5 12
|
eqeq12d |
|- ( a = X -> ( Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) <-> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , b >. , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , b >. , c >. } ) ) ) |
14 |
|
opeq2 |
|- ( b = Y -> <. X , b >. = <. X , Y >. ) |
15 |
14
|
opeq1d |
|- ( b = Y -> <. <. X , b >. , c >. = <. <. X , Y >. , c >. ) |
16 |
|
predeq3 |
|- ( <. <. X , b >. , c >. = <. <. X , Y >. , c >. -> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , b >. , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , c >. ) ) |
17 |
15 16
|
syl |
|- ( b = Y -> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , b >. , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , c >. ) ) |
18 |
|
predeq3 |
|- ( b = Y -> Pred ( S , B , b ) = Pred ( S , B , Y ) ) |
19 |
|
sneq |
|- ( b = Y -> { b } = { Y } ) |
20 |
18 19
|
uneq12d |
|- ( b = Y -> ( Pred ( S , B , b ) u. { b } ) = ( Pred ( S , B , Y ) u. { Y } ) ) |
21 |
20
|
xpeq2d |
|- ( b = Y -> ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) = ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) ) |
22 |
21
|
xpeq1d |
|- ( b = Y -> ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) ) |
23 |
15
|
sneqd |
|- ( b = Y -> { <. <. X , b >. , c >. } = { <. <. X , Y >. , c >. } ) |
24 |
22 23
|
difeq12d |
|- ( b = Y -> ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , b >. , c >. } ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , Y >. , c >. } ) ) |
25 |
17 24
|
eqeq12d |
|- ( b = Y -> ( Pred ( U , ( ( A X. B ) X. C ) , <. <. X , b >. , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , b >. , c >. } ) <-> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , Y >. , c >. } ) ) ) |
26 |
|
opeq2 |
|- ( c = Z -> <. <. X , Y >. , c >. = <. <. X , Y >. , Z >. ) |
27 |
|
predeq3 |
|- ( <. <. X , Y >. , c >. = <. <. X , Y >. , Z >. -> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , Z >. ) ) |
28 |
26 27
|
syl |
|- ( c = Z -> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , c >. ) = Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , Z >. ) ) |
29 |
|
predeq3 |
|- ( c = Z -> Pred ( T , C , c ) = Pred ( T , C , Z ) ) |
30 |
|
sneq |
|- ( c = Z -> { c } = { Z } ) |
31 |
29 30
|
uneq12d |
|- ( c = Z -> ( Pred ( T , C , c ) u. { c } ) = ( Pred ( T , C , Z ) u. { Z } ) ) |
32 |
31
|
xpeq2d |
|- ( c = Z -> ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) ) |
33 |
26
|
sneqd |
|- ( c = Z -> { <. <. X , Y >. , c >. } = { <. <. X , Y >. , Z >. } ) |
34 |
32 33
|
difeq12d |
|- ( c = Z -> ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , Y >. , c >. } ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) \ { <. <. X , Y >. , Z >. } ) ) |
35 |
28 34
|
eqeq12d |
|- ( c = Z -> ( Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , c >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. X , Y >. , c >. } ) <-> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , Z >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) \ { <. <. X , Y >. , Z >. } ) ) ) |
36 |
|
elxpxp |
|- ( q e. ( ( A X. B ) X. C ) <-> E. d e. A E. e e. B E. f e. C q = <. <. d , e >. , f >. ) |
37 |
|
df-3an |
|- ( ( d e. A /\ e e. B /\ f e. C ) <-> ( ( d e. A /\ e e. B ) /\ f e. C ) ) |
38 |
|
df-3an |
|- ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
39 |
|
eldif |
|- ( <. <. d , e >. , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) <-> ( <. <. d , e >. , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) /\ -. <. <. d , e >. , f >. e. { <. <. a , b >. , c >. } ) ) |
40 |
|
opelxp |
|- ( <. <. d , e >. , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) <-> ( <. d , e >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) /\ f e. ( Pred ( T , C , c ) u. { c } ) ) ) |
41 |
|
opelxp |
|- ( <. d , e >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) <-> ( d e. ( Pred ( R , A , a ) u. { a } ) /\ e e. ( Pred ( S , B , b ) u. { b } ) ) ) |
42 |
|
elun |
|- ( d e. ( Pred ( R , A , a ) u. { a } ) <-> ( d e. Pred ( R , A , a ) \/ d e. { a } ) ) |
43 |
|
vex |
|- d e. _V |
44 |
43
|
elpred |
|- ( a e. _V -> ( d e. Pred ( R , A , a ) <-> ( d e. A /\ d R a ) ) ) |
45 |
44
|
elv |
|- ( d e. Pred ( R , A , a ) <-> ( d e. A /\ d R a ) ) |
46 |
|
velsn |
|- ( d e. { a } <-> d = a ) |
47 |
45 46
|
orbi12i |
|- ( ( d e. Pred ( R , A , a ) \/ d e. { a } ) <-> ( ( d e. A /\ d R a ) \/ d = a ) ) |
48 |
42 47
|
bitri |
|- ( d e. ( Pred ( R , A , a ) u. { a } ) <-> ( ( d e. A /\ d R a ) \/ d = a ) ) |
49 |
|
elun |
|- ( e e. ( Pred ( S , B , b ) u. { b } ) <-> ( e e. Pred ( S , B , b ) \/ e e. { b } ) ) |
50 |
|
vex |
|- e e. _V |
51 |
50
|
elpred |
|- ( b e. _V -> ( e e. Pred ( S , B , b ) <-> ( e e. B /\ e S b ) ) ) |
52 |
51
|
elv |
|- ( e e. Pred ( S , B , b ) <-> ( e e. B /\ e S b ) ) |
53 |
|
velsn |
|- ( e e. { b } <-> e = b ) |
54 |
52 53
|
orbi12i |
|- ( ( e e. Pred ( S , B , b ) \/ e e. { b } ) <-> ( ( e e. B /\ e S b ) \/ e = b ) ) |
55 |
49 54
|
bitri |
|- ( e e. ( Pred ( S , B , b ) u. { b } ) <-> ( ( e e. B /\ e S b ) \/ e = b ) ) |
56 |
48 55
|
anbi12i |
|- ( ( d e. ( Pred ( R , A , a ) u. { a } ) /\ e e. ( Pred ( S , B , b ) u. { b } ) ) <-> ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) ) |
57 |
41 56
|
bitri |
|- ( <. d , e >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) <-> ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) ) |
58 |
|
elun |
|- ( f e. ( Pred ( T , C , c ) u. { c } ) <-> ( f e. Pred ( T , C , c ) \/ f e. { c } ) ) |
59 |
|
vex |
|- f e. _V |
60 |
59
|
elpred |
|- ( c e. _V -> ( f e. Pred ( T , C , c ) <-> ( f e. C /\ f T c ) ) ) |
61 |
60
|
elv |
|- ( f e. Pred ( T , C , c ) <-> ( f e. C /\ f T c ) ) |
62 |
|
velsn |
|- ( f e. { c } <-> f = c ) |
63 |
61 62
|
orbi12i |
|- ( ( f e. Pred ( T , C , c ) \/ f e. { c } ) <-> ( ( f e. C /\ f T c ) \/ f = c ) ) |
64 |
58 63
|
bitri |
|- ( f e. ( Pred ( T , C , c ) u. { c } ) <-> ( ( f e. C /\ f T c ) \/ f = c ) ) |
65 |
57 64
|
anbi12i |
|- ( ( <. d , e >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) /\ f e. ( Pred ( T , C , c ) u. { c } ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) |
66 |
40 65
|
bitri |
|- ( <. <. d , e >. , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) |
67 |
|
df-ne |
|- ( <. <. d , e >. , f >. =/= <. <. a , b >. , c >. <-> -. <. <. d , e >. , f >. = <. <. a , b >. , c >. ) |
68 |
43 50 59
|
otthne |
|- ( <. <. d , e >. , f >. =/= <. <. a , b >. , c >. <-> ( d =/= a \/ e =/= b \/ f =/= c ) ) |
69 |
67 68
|
bitr3i |
|- ( -. <. <. d , e >. , f >. = <. <. a , b >. , c >. <-> ( d =/= a \/ e =/= b \/ f =/= c ) ) |
70 |
|
opex |
|- <. <. d , e >. , f >. e. _V |
71 |
70
|
elsn |
|- ( <. <. d , e >. , f >. e. { <. <. a , b >. , c >. } <-> <. <. d , e >. , f >. = <. <. a , b >. , c >. ) |
72 |
69 71
|
xchnxbir |
|- ( -. <. <. d , e >. , f >. e. { <. <. a , b >. , c >. } <-> ( d =/= a \/ e =/= b \/ f =/= c ) ) |
73 |
66 72
|
anbi12i |
|- ( ( <. <. d , e >. , f >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) /\ -. <. <. d , e >. , f >. e. { <. <. a , b >. , c >. } ) <-> ( ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) |
74 |
39 73
|
bitri |
|- ( <. <. d , e >. , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) <-> ( ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) |
75 |
|
simpr1 |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> d e. A ) |
76 |
75
|
biantrurd |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( d R a <-> ( d e. A /\ d R a ) ) ) |
77 |
76
|
orbi1d |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( d R a \/ d = a ) <-> ( ( d e. A /\ d R a ) \/ d = a ) ) ) |
78 |
|
simpr2 |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> e e. B ) |
79 |
78
|
biantrurd |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( e S b <-> ( e e. B /\ e S b ) ) ) |
80 |
79
|
orbi1d |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( e S b \/ e = b ) <-> ( ( e e. B /\ e S b ) \/ e = b ) ) ) |
81 |
|
simpr3 |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> f e. C ) |
82 |
81
|
biantrurd |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( f T c <-> ( f e. C /\ f T c ) ) ) |
83 |
82
|
orbi1d |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( f T c \/ f = c ) <-> ( ( f e. C /\ f T c ) \/ f = c ) ) ) |
84 |
77 80 83
|
3anbi123d |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) <-> ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) ) |
85 |
|
df-3an |
|- ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) |
86 |
84 85
|
bitrdi |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) <-> ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) ) ) |
87 |
86
|
anbi1d |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) <-> ( ( ( ( ( d e. A /\ d R a ) \/ d = a ) /\ ( ( e e. B /\ e S b ) \/ e = b ) ) /\ ( ( f e. C /\ f T c ) \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
88 |
74 87
|
bitr4id |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( <. <. d , e >. , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) <-> ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
89 |
|
pm3.22 |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) ) |
90 |
89
|
biantrurd |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) <-> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) ) |
91 |
88 90
|
bitr2d |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> <. <. d , e >. , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) |
92 |
38 91
|
syl5bb |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> <. <. d , e >. , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) |
93 |
|
breq1 |
|- ( q = <. <. d , e >. , f >. -> ( q U <. <. a , b >. , c >. <-> <. <. d , e >. , f >. U <. <. a , b >. , c >. ) ) |
94 |
1
|
xpord3lem |
|- ( <. <. d , e >. , f >. U <. <. a , b >. , c >. <-> ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) |
95 |
93 94
|
bitrdi |
|- ( q = <. <. d , e >. , f >. -> ( q U <. <. a , b >. , c >. <-> ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) ) ) |
96 |
|
eleq1 |
|- ( q = <. <. d , e >. , f >. -> ( q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) <-> <. <. d , e >. , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) |
97 |
95 96
|
bibi12d |
|- ( q = <. <. d , e >. , f >. -> ( ( q U <. <. a , b >. , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) <-> ( ( ( d e. A /\ e e. B /\ f e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( d R a \/ d = a ) /\ ( e S b \/ e = b ) /\ ( f T c \/ f = c ) ) /\ ( d =/= a \/ e =/= b \/ f =/= c ) ) ) <-> <. <. d , e >. , f >. e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
98 |
92 97
|
syl5ibrcom |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B /\ f e. C ) ) -> ( q = <. <. d , e >. , f >. -> ( q U <. <. a , b >. , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
99 |
37 98
|
sylan2br |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( ( d e. A /\ e e. B ) /\ f e. C ) ) -> ( q = <. <. d , e >. , f >. -> ( q U <. <. a , b >. , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
100 |
99
|
anassrs |
|- ( ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) /\ f e. C ) -> ( q = <. <. d , e >. , f >. -> ( q U <. <. a , b >. , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
101 |
100
|
rexlimdva |
|- ( ( ( a e. A /\ b e. B /\ c e. C ) /\ ( d e. A /\ e e. B ) ) -> ( E. f e. C q = <. <. d , e >. , f >. -> ( q U <. <. a , b >. , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
102 |
101
|
rexlimdvva |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( E. d e. A E. e e. B E. f e. C q = <. <. d , e >. , f >. -> ( q U <. <. a , b >. , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
103 |
36 102
|
syl5bi |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( q e. ( ( A X. B ) X. C ) -> ( q U <. <. a , b >. , c >. <-> q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
104 |
103
|
pm5.32d |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( q e. ( ( A X. B ) X. C ) /\ q U <. <. a , b >. , c >. ) <-> ( q e. ( ( A X. B ) X. C ) /\ q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
105 |
|
opex |
|- <. <. a , b >. , c >. e. _V |
106 |
|
vex |
|- q e. _V |
107 |
106
|
elpred |
|- ( <. <. a , b >. , c >. e. _V -> ( q e. Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) <-> ( q e. ( ( A X. B ) X. C ) /\ q U <. <. a , b >. , c >. ) ) ) |
108 |
105 107
|
ax-mp |
|- ( q e. Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) <-> ( q e. ( ( A X. B ) X. C ) /\ q U <. <. a , b >. , c >. ) ) |
109 |
|
elin |
|- ( q e. ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) <-> ( q e. ( ( A X. B ) X. C ) /\ q e. ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) |
110 |
104 108 109
|
3bitr4g |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( q e. Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) <-> q e. ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) ) |
111 |
110
|
eqrdv |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) = ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) ) |
112 |
|
predss |
|- Pred ( R , A , a ) C_ A |
113 |
112
|
a1i |
|- ( a e. A -> Pred ( R , A , a ) C_ A ) |
114 |
|
snssi |
|- ( a e. A -> { a } C_ A ) |
115 |
113 114
|
unssd |
|- ( a e. A -> ( Pred ( R , A , a ) u. { a } ) C_ A ) |
116 |
115
|
3ad2ant1 |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( Pred ( R , A , a ) u. { a } ) C_ A ) |
117 |
|
predss |
|- Pred ( S , B , b ) C_ B |
118 |
117
|
a1i |
|- ( b e. B -> Pred ( S , B , b ) C_ B ) |
119 |
|
snssi |
|- ( b e. B -> { b } C_ B ) |
120 |
118 119
|
unssd |
|- ( b e. B -> ( Pred ( S , B , b ) u. { b } ) C_ B ) |
121 |
120
|
3ad2ant2 |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( Pred ( S , B , b ) u. { b } ) C_ B ) |
122 |
|
xpss12 |
|- ( ( ( Pred ( R , A , a ) u. { a } ) C_ A /\ ( Pred ( S , B , b ) u. { b } ) C_ B ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) ) |
123 |
116 121 122
|
syl2anc |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) ) |
124 |
|
predss |
|- Pred ( T , C , c ) C_ C |
125 |
124
|
a1i |
|- ( c e. C -> Pred ( T , C , c ) C_ C ) |
126 |
|
snssi |
|- ( c e. C -> { c } C_ C ) |
127 |
125 126
|
unssd |
|- ( c e. C -> ( Pred ( T , C , c ) u. { c } ) C_ C ) |
128 |
127
|
3ad2ant3 |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( Pred ( T , C , c ) u. { c } ) C_ C ) |
129 |
|
xpss12 |
|- ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) /\ ( Pred ( T , C , c ) u. { c } ) C_ C ) -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) C_ ( ( A X. B ) X. C ) ) |
130 |
123 128 129
|
syl2anc |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) C_ ( ( A X. B ) X. C ) ) |
131 |
130
|
ssdifssd |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) C_ ( ( A X. B ) X. C ) ) |
132 |
|
sseqin2 |
|- ( ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) C_ ( ( A X. B ) X. C ) <-> ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) |
133 |
131 132
|
sylib |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> ( ( ( A X. B ) X. C ) i^i ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) |
134 |
111 133
|
eqtrd |
|- ( ( a e. A /\ b e. B /\ c e. C ) -> Pred ( U , ( ( A X. B ) X. C ) , <. <. a , b >. , c >. ) = ( ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) X. ( Pred ( T , C , c ) u. { c } ) ) \ { <. <. a , b >. , c >. } ) ) |
135 |
13 25 35 134
|
vtocl3ga |
|- ( ( X e. A /\ Y e. B /\ Z e. C ) -> Pred ( U , ( ( A X. B ) X. C ) , <. <. X , Y >. , Z >. ) = ( ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) X. ( Pred ( T , C , Z ) u. { Z } ) ) \ { <. <. X , Y >. , Z >. } ) ) |