Metamath Proof Explorer


Theorem otthne

Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses otthne.1
|- A e. _V
otthne.2
|- B e. _V
otthne.3
|- C e. _V
Assertion otthne
|- ( <. <. A , B >. , C >. =/= <. <. D , E >. , F >. <-> ( A =/= D \/ B =/= E \/ C =/= F ) )

Proof

Step Hyp Ref Expression
1 otthne.1
 |-  A e. _V
2 otthne.2
 |-  B e. _V
3 otthne.3
 |-  C e. _V
4 1 2 opthne
 |-  ( <. A , B >. =/= <. D , E >. <-> ( A =/= D \/ B =/= E ) )
5 4 orbi1i
 |-  ( ( <. A , B >. =/= <. D , E >. \/ C =/= F ) <-> ( ( A =/= D \/ B =/= E ) \/ C =/= F ) )
6 opex
 |-  <. A , B >. e. _V
7 6 3 opthne
 |-  ( <. <. A , B >. , C >. =/= <. <. D , E >. , F >. <-> ( <. A , B >. =/= <. D , E >. \/ C =/= F ) )
8 df-3or
 |-  ( ( A =/= D \/ B =/= E \/ C =/= F ) <-> ( ( A =/= D \/ B =/= E ) \/ C =/= F ) )
9 5 7 8 3bitr4i
 |-  ( <. <. A , B >. , C >. =/= <. <. D , E >. , F >. <-> ( A =/= D \/ B =/= E \/ C =/= F ) )