Step |
Hyp |
Ref |
Expression |
1 |
|
otthne.1 |
|- A e. _V |
2 |
|
otthne.2 |
|- B e. _V |
3 |
|
otthne.3 |
|- C e. _V |
4 |
1 2
|
opthne |
|- ( <. A , B >. =/= <. D , E >. <-> ( A =/= D \/ B =/= E ) ) |
5 |
4
|
orbi1i |
|- ( ( <. A , B >. =/= <. D , E >. \/ C =/= F ) <-> ( ( A =/= D \/ B =/= E ) \/ C =/= F ) ) |
6 |
|
opex |
|- <. A , B >. e. _V |
7 |
6 3
|
opthne |
|- ( <. <. A , B >. , C >. =/= <. <. D , E >. , F >. <-> ( <. A , B >. =/= <. D , E >. \/ C =/= F ) ) |
8 |
|
df-3or |
|- ( ( A =/= D \/ B =/= E \/ C =/= F ) <-> ( ( A =/= D \/ B =/= E ) \/ C =/= F ) ) |
9 |
5 7 8
|
3bitr4i |
|- ( <. <. A , B >. , C >. =/= <. <. D , E >. , F >. <-> ( A =/= D \/ B =/= E \/ C =/= F ) ) |