Metamath Proof Explorer


Theorem xpord3pred

Description: Calculate the predecsessor class for the triple order. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypothesis xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
Assertion xpord3pred X A Y B Z C Pred U A × B × C X Y Z = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 opeq1 a = X a b = X b
3 2 opeq1d a = X a b c = X b c
4 predeq3 a b c = X b c Pred U A × B × C a b c = Pred U A × B × C X b c
5 3 4 syl a = X Pred U A × B × C a b c = Pred U A × B × C X b c
6 predeq3 a = X Pred R A a = Pred R A X
7 sneq a = X a = X
8 6 7 uneq12d a = X Pred R A a a = Pred R A X X
9 8 xpeq1d a = X Pred R A a a × Pred S B b b = Pred R A X X × Pred S B b b
10 9 xpeq1d a = X Pred R A a a × Pred S B b b × Pred T C c c = Pred R A X X × Pred S B b b × Pred T C c c
11 3 sneqd a = X a b c = X b c
12 10 11 difeq12d a = X Pred R A a a × Pred S B b b × Pred T C c c a b c = Pred R A X X × Pred S B b b × Pred T C c c X b c
13 5 12 eqeq12d a = X Pred U A × B × C a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c Pred U A × B × C X b c = Pred R A X X × Pred S B b b × Pred T C c c X b c
14 opeq2 b = Y X b = X Y
15 14 opeq1d b = Y X b c = X Y c
16 predeq3 X b c = X Y c Pred U A × B × C X b c = Pred U A × B × C X Y c
17 15 16 syl b = Y Pred U A × B × C X b c = Pred U A × B × C X Y c
18 predeq3 b = Y Pred S B b = Pred S B Y
19 sneq b = Y b = Y
20 18 19 uneq12d b = Y Pred S B b b = Pred S B Y Y
21 20 xpeq2d b = Y Pred R A X X × Pred S B b b = Pred R A X X × Pred S B Y Y
22 21 xpeq1d b = Y Pred R A X X × Pred S B b b × Pred T C c c = Pred R A X X × Pred S B Y Y × Pred T C c c
23 15 sneqd b = Y X b c = X Y c
24 22 23 difeq12d b = Y Pred R A X X × Pred S B b b × Pred T C c c X b c = Pred R A X X × Pred S B Y Y × Pred T C c c X Y c
25 17 24 eqeq12d b = Y Pred U A × B × C X b c = Pred R A X X × Pred S B b b × Pred T C c c X b c Pred U A × B × C X Y c = Pred R A X X × Pred S B Y Y × Pred T C c c X Y c
26 opeq2 c = Z X Y c = X Y Z
27 predeq3 X Y c = X Y Z Pred U A × B × C X Y c = Pred U A × B × C X Y Z
28 26 27 syl c = Z Pred U A × B × C X Y c = Pred U A × B × C X Y Z
29 predeq3 c = Z Pred T C c = Pred T C Z
30 sneq c = Z c = Z
31 29 30 uneq12d c = Z Pred T C c c = Pred T C Z Z
32 31 xpeq2d c = Z Pred R A X X × Pred S B Y Y × Pred T C c c = Pred R A X X × Pred S B Y Y × Pred T C Z Z
33 26 sneqd c = Z X Y c = X Y Z
34 32 33 difeq12d c = Z Pred R A X X × Pred S B Y Y × Pred T C c c X Y c = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z
35 28 34 eqeq12d c = Z Pred U A × B × C X Y c = Pred R A X X × Pred S B Y Y × Pred T C c c X Y c Pred U A × B × C X Y Z = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z
36 elxpxp q A × B × C d A e B f C q = d e f
37 df-3an d A e B f C d A e B f C
38 df-3an d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
39 eldif d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d e f Pred R A a a × Pred S B b b × Pred T C c c ¬ d e f a b c
40 opelxp d e f Pred R A a a × Pred S B b b × Pred T C c c d e Pred R A a a × Pred S B b b f Pred T C c c
41 opelxp d e Pred R A a a × Pred S B b b d Pred R A a a e Pred S B b b
42 elun d Pred R A a a d Pred R A a d a
43 vex d V
44 43 elpred a V d Pred R A a d A d R a
45 44 elv d Pred R A a d A d R a
46 velsn d a d = a
47 45 46 orbi12i d Pred R A a d a d A d R a d = a
48 42 47 bitri d Pred R A a a d A d R a d = a
49 elun e Pred S B b b e Pred S B b e b
50 vex e V
51 50 elpred b V e Pred S B b e B e S b
52 51 elv e Pred S B b e B e S b
53 velsn e b e = b
54 52 53 orbi12i e Pred S B b e b e B e S b e = b
55 49 54 bitri e Pred S B b b e B e S b e = b
56 48 55 anbi12i d Pred R A a a e Pred S B b b d A d R a d = a e B e S b e = b
57 41 56 bitri d e Pred R A a a × Pred S B b b d A d R a d = a e B e S b e = b
58 elun f Pred T C c c f Pred T C c f c
59 vex f V
60 59 elpred c V f Pred T C c f C f T c
61 60 elv f Pred T C c f C f T c
62 velsn f c f = c
63 61 62 orbi12i f Pred T C c f c f C f T c f = c
64 58 63 bitri f Pred T C c c f C f T c f = c
65 57 64 anbi12i d e Pred R A a a × Pred S B b b f Pred T C c c d A d R a d = a e B e S b e = b f C f T c f = c
66 40 65 bitri d e f Pred R A a a × Pred S B b b × Pred T C c c d A d R a d = a e B e S b e = b f C f T c f = c
67 df-ne d e f a b c ¬ d e f = a b c
68 43 50 59 otthne d e f a b c d a e b f c
69 67 68 bitr3i ¬ d e f = a b c d a e b f c
70 opex d e f V
71 70 elsn d e f a b c d e f = a b c
72 69 71 xchnxbir ¬ d e f a b c d a e b f c
73 66 72 anbi12i d e f Pred R A a a × Pred S B b b × Pred T C c c ¬ d e f a b c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
74 39 73 bitri d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
75 simpr1 a A b B c C d A e B f C d A
76 75 biantrurd a A b B c C d A e B f C d R a d A d R a
77 76 orbi1d a A b B c C d A e B f C d R a d = a d A d R a d = a
78 simpr2 a A b B c C d A e B f C e B
79 78 biantrurd a A b B c C d A e B f C e S b e B e S b
80 79 orbi1d a A b B c C d A e B f C e S b e = b e B e S b e = b
81 simpr3 a A b B c C d A e B f C f C
82 81 biantrurd a A b B c C d A e B f C f T c f C f T c
83 82 orbi1d a A b B c C d A e B f C f T c f = c f C f T c f = c
84 77 80 83 3anbi123d a A b B c C d A e B f C d R a d = a e S b e = b f T c f = c d A d R a d = a e B e S b e = b f C f T c f = c
85 df-3an d A d R a d = a e B e S b e = b f C f T c f = c d A d R a d = a e B e S b e = b f C f T c f = c
86 84 85 bitrdi a A b B c C d A e B f C d R a d = a e S b e = b f T c f = c d A d R a d = a e B e S b e = b f C f T c f = c
87 86 anbi1d a A b B c C d A e B f C d R a d = a e S b e = b f T c f = c d a e b f c d A d R a d = a e B e S b e = b f C f T c f = c d a e b f c
88 74 87 bitr4id a A b B c C d A e B f C d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d R a d = a e S b e = b f T c f = c d a e b f c
89 pm3.22 a A b B c C d A e B f C d A e B f C a A b B c C
90 89 biantrurd a A b B c C d A e B f C d R a d = a e S b e = b f T c f = c d a e b f c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
91 88 90 bitr2d a A b B c C d A e B f C d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d e f Pred R A a a × Pred S B b b × Pred T C c c a b c
92 38 91 syl5bb a A b B c C d A e B f C d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d e f Pred R A a a × Pred S B b b × Pred T C c c a b c
93 breq1 q = d e f q U a b c d e f U a b c
94 1 xpord3lem d e f U a b c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
95 93 94 bitrdi q = d e f q U a b c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c
96 eleq1 q = d e f q Pred R A a a × Pred S B b b × Pred T C c c a b c d e f Pred R A a a × Pred S B b b × Pred T C c c a b c
97 95 96 bibi12d q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c d A e B f C a A b B c C d R a d = a e S b e = b f T c f = c d a e b f c d e f Pred R A a a × Pred S B b b × Pred T C c c a b c
98 92 97 syl5ibrcom a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
99 37 98 sylan2br a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
100 99 anassrs a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
101 100 rexlimdva a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
102 101 rexlimdvva a A b B c C d A e B f C q = d e f q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
103 36 102 syl5bi a A b B c C q A × B × C q U a b c q Pred R A a a × Pred S B b b × Pred T C c c a b c
104 103 pm5.32d a A b B c C q A × B × C q U a b c q A × B × C q Pred R A a a × Pred S B b b × Pred T C c c a b c
105 opex a b c V
106 vex q V
107 106 elpred a b c V q Pred U A × B × C a b c q A × B × C q U a b c
108 105 107 ax-mp q Pred U A × B × C a b c q A × B × C q U a b c
109 elin q A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c q A × B × C q Pred R A a a × Pred S B b b × Pred T C c c a b c
110 104 108 109 3bitr4g a A b B c C q Pred U A × B × C a b c q A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c
111 110 eqrdv a A b B c C Pred U A × B × C a b c = A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c
112 predss Pred R A a A
113 112 a1i a A Pred R A a A
114 snssi a A a A
115 113 114 unssd a A Pred R A a a A
116 115 3ad2ant1 a A b B c C Pred R A a a A
117 predss Pred S B b B
118 117 a1i b B Pred S B b B
119 snssi b B b B
120 118 119 unssd b B Pred S B b b B
121 120 3ad2ant2 a A b B c C Pred S B b b B
122 xpss12 Pred R A a a A Pred S B b b B Pred R A a a × Pred S B b b A × B
123 116 121 122 syl2anc a A b B c C Pred R A a a × Pred S B b b A × B
124 predss Pred T C c C
125 124 a1i c C Pred T C c C
126 snssi c C c C
127 125 126 unssd c C Pred T C c c C
128 127 3ad2ant3 a A b B c C Pred T C c c C
129 xpss12 Pred R A a a × Pred S B b b A × B Pred T C c c C Pred R A a a × Pred S B b b × Pred T C c c A × B × C
130 123 128 129 syl2anc a A b B c C Pred R A a a × Pred S B b b × Pred T C c c A × B × C
131 130 ssdifssd a A b B c C Pred R A a a × Pred S B b b × Pred T C c c a b c A × B × C
132 sseqin2 Pred R A a a × Pred S B b b × Pred T C c c a b c A × B × C A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
133 131 132 sylib a A b B c C A × B × C Pred R A a a × Pred S B b b × Pred T C c c a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
134 111 133 eqtrd a A b B c C Pred U A × B × C a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
135 13 25 35 134 vtocl3ga X A Y B Z C Pred U A × B × C X Y Z = Pred R A X X × Pred S B Y Y × Pred T C Z Z X Y Z