Metamath Proof Explorer


Theorem otelxp

Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025)

Ref Expression
Assertion otelxp ABCD×E×FADBECF

Proof

Step Hyp Ref Expression
1 opelxp ABCD×E×FABD×ECF
2 opelxp ABD×EADBE
3 2 anbi1i ABD×ECFADBECF
4 1 3 bitri ABCD×E×FADBECF
5 df-ot ABC=ABC
6 5 eleq1i ABCD×E×FABCD×E×F
7 df-3an ADBECFADBECF
8 4 6 7 3bitr4i ABCD×E×FADBECF