Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | dfse3 | |- ( R Se A <-> A. x e. A Pred ( R , A , x ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfse2 | |- ( R Se A <-> A. x e. A ( A i^i ( `' R " { x } ) ) e. _V ) |
|
2 | df-pred | |- Pred ( R , A , x ) = ( A i^i ( `' R " { x } ) ) |
|
3 | 2 | eleq1i | |- ( Pred ( R , A , x ) e. _V <-> ( A i^i ( `' R " { x } ) ) e. _V ) |
4 | 3 | ralbii | |- ( A. x e. A Pred ( R , A , x ) e. _V <-> A. x e. A ( A i^i ( `' R " { x } ) ) e. _V ) |
5 | 1 4 | bitr4i | |- ( R Se A <-> A. x e. A Pred ( R , A , x ) e. _V ) |