Metamath Proof Explorer


Theorem dfse3

Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion dfse3
|- ( R Se A <-> A. x e. A Pred ( R , A , x ) e. _V )

Proof

Step Hyp Ref Expression
1 dfse2
 |-  ( R Se A <-> A. x e. A ( A i^i ( `' R " { x } ) ) e. _V )
2 df-pred
 |-  Pred ( R , A , x ) = ( A i^i ( `' R " { x } ) )
3 2 eleq1i
 |-  ( Pred ( R , A , x ) e. _V <-> ( A i^i ( `' R " { x } ) ) e. _V )
4 3 ralbii
 |-  ( A. x e. A Pred ( R , A , x ) e. _V <-> A. x e. A ( A i^i ( `' R " { x } ) ) e. _V )
5 1 4 bitr4i
 |-  ( R Se A <-> A. x e. A Pred ( R , A , x ) e. _V )