Description: A version of ralxp with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ralxpes | |- ( A. x e. ( A X. B ) [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph <-> A. y e. A A. z e. B ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbc1v | |- F/ y [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph |
|
2 | nfcv | |- F/_ z ( 1st ` x ) |
|
3 | nfsbc1v | |- F/ z [. ( 2nd ` x ) / z ]. ph |
|
4 | 2 3 | nfsbcw | |- F/ z [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph |
5 | nfv | |- F/ x ph |
|
6 | sbcopeq1a | |- ( x = <. y , z >. -> ( [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph <-> ph ) ) |
|
7 | 1 4 5 6 | ralxpf | |- ( A. x e. ( A X. B ) [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph <-> A. y e. A A. z e. B ph ) |