Metamath Proof Explorer


Theorem ot2elxp

Description: Ordered triple membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Assertion ot2elxp
|- ( <. <. A , B >. , C >. e. ( ( D X. E ) X. F ) <-> ( A e. D /\ B e. E /\ C e. F ) )

Proof

Step Hyp Ref Expression
1 opelxp
 |-  ( <. A , B >. e. ( D X. E ) <-> ( A e. D /\ B e. E ) )
2 1 anbi1i
 |-  ( ( <. A , B >. e. ( D X. E ) /\ C e. F ) <-> ( ( A e. D /\ B e. E ) /\ C e. F ) )
3 opelxp
 |-  ( <. <. A , B >. , C >. e. ( ( D X. E ) X. F ) <-> ( <. A , B >. e. ( D X. E ) /\ C e. F ) )
4 df-3an
 |-  ( ( A e. D /\ B e. E /\ C e. F ) <-> ( ( A e. D /\ B e. E ) /\ C e. F ) )
5 2 3 4 3bitr4i
 |-  ( <. <. A , B >. , C >. e. ( ( D X. E ) X. F ) <-> ( A e. D /\ B e. E /\ C e. F ) )