Metamath Proof Explorer


Theorem ot2elxp

Description: Ordered triple membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Assertion ot2elxp A B C D × E × F A D B E C F

Proof

Step Hyp Ref Expression
1 opelxp A B D × E A D B E
2 1 anbi1i A B D × E C F A D B E C F
3 opelxp A B C D × E × F A B D × E C F
4 df-3an A D B E C F A D B E C F
5 2 3 4 3bitr4i A B C D × E × F A D B E C F