Metamath Proof Explorer


Theorem ot2elxp

Description: Ordered triple membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Assertion ot2elxp ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 𝐴𝐷𝐵𝐸𝐶𝐹 ) )

Proof

Step Hyp Ref Expression
1 opelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐷 × 𝐸 ) ↔ ( 𝐴𝐷𝐵𝐸 ) )
2 1 anbi1i ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐷 × 𝐸 ) ∧ 𝐶𝐹 ) ↔ ( ( 𝐴𝐷𝐵𝐸 ) ∧ 𝐶𝐹 ) )
3 opelxp ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐷 × 𝐸 ) ∧ 𝐶𝐹 ) )
4 df-3an ( ( 𝐴𝐷𝐵𝐸𝐶𝐹 ) ↔ ( ( 𝐴𝐷𝐵𝐸 ) ∧ 𝐶𝐹 ) )
5 2 3 4 3bitr4i ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 𝐴𝐷𝐵𝐸𝐶𝐹 ) )