Description: Ordered triple membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ot2elxp | ⊢ ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐷 × 𝐸 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ) ) | |
2 | 1 | anbi1i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐷 × 𝐸 ) ∧ 𝐶 ∈ 𝐹 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ) ∧ 𝐶 ∈ 𝐹 ) ) |
3 | opelxp | ⊢ ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐷 × 𝐸 ) ∧ 𝐶 ∈ 𝐹 ) ) | |
4 | df-3an | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ) ∧ 𝐶 ∈ 𝐹 ) ) | |
5 | 2 3 4 | 3bitr4i | ⊢ ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) ) |