| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 2 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 3 | 
							
								1 2
							 | 
							op2ndd | 
							 |-  ( A = <. x , y >. -> ( 2nd ` A ) = y )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqcomd | 
							 |-  ( A = <. x , y >. -> y = ( 2nd ` A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sbceq1a | 
							 |-  ( y = ( 2nd ` A ) -> ( ph <-> [. ( 2nd ` A ) / y ]. ph ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							 |-  ( A = <. x , y >. -> ( ph <-> [. ( 2nd ` A ) / y ]. ph ) )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							op1std | 
							 |-  ( A = <. x , y >. -> ( 1st ` A ) = x )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqcomd | 
							 |-  ( A = <. x , y >. -> x = ( 1st ` A ) )  | 
						
						
							| 9 | 
							
								
							 | 
							sbceq1a | 
							 |-  ( x = ( 1st ` A ) -> ( [. ( 2nd ` A ) / y ]. ph <-> [. ( 1st ` A ) / x ]. [. ( 2nd ` A ) / y ]. ph ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( A = <. x , y >. -> ( [. ( 2nd ` A ) / y ]. ph <-> [. ( 1st ` A ) / x ]. [. ( 2nd ` A ) / y ]. ph ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							bitr2d | 
							 |-  ( A = <. x , y >. -> ( [. ( 1st ` A ) / x ]. [. ( 2nd ` A ) / y ]. ph <-> ph ) )  |