| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralxpf.1 |
|- F/ y ph |
| 2 |
|
ralxpf.2 |
|- F/ z ph |
| 3 |
|
ralxpf.3 |
|- F/ x ps |
| 4 |
|
ralxpf.4 |
|- ( x = <. y , z >. -> ( ph <-> ps ) ) |
| 5 |
|
cbvralsvw |
|- ( A. x e. ( A X. B ) ph <-> A. w e. ( A X. B ) [ w / x ] ph ) |
| 6 |
|
cbvralsvw |
|- ( A. z e. B [ u / y ] ps <-> A. v e. B [ v / z ] [ u / y ] ps ) |
| 7 |
6
|
ralbii |
|- ( A. u e. A A. z e. B [ u / y ] ps <-> A. u e. A A. v e. B [ v / z ] [ u / y ] ps ) |
| 8 |
|
nfv |
|- F/ u A. z e. B ps |
| 9 |
|
nfcv |
|- F/_ y B |
| 10 |
|
nfs1v |
|- F/ y [ u / y ] ps |
| 11 |
9 10
|
nfralw |
|- F/ y A. z e. B [ u / y ] ps |
| 12 |
|
sbequ12 |
|- ( y = u -> ( ps <-> [ u / y ] ps ) ) |
| 13 |
12
|
ralbidv |
|- ( y = u -> ( A. z e. B ps <-> A. z e. B [ u / y ] ps ) ) |
| 14 |
8 11 13
|
cbvralw |
|- ( A. y e. A A. z e. B ps <-> A. u e. A A. z e. B [ u / y ] ps ) |
| 15 |
|
vex |
|- u e. _V |
| 16 |
|
vex |
|- v e. _V |
| 17 |
15 16
|
eqvinop |
|- ( w = <. u , v >. <-> E. y E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) ) |
| 18 |
1
|
nfsbv |
|- F/ y [ w / x ] ph |
| 19 |
10
|
nfsbv |
|- F/ y [ v / z ] [ u / y ] ps |
| 20 |
18 19
|
nfbi |
|- F/ y ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) |
| 21 |
2
|
nfsbv |
|- F/ z [ w / x ] ph |
| 22 |
|
nfs1v |
|- F/ z [ v / z ] [ u / y ] ps |
| 23 |
21 22
|
nfbi |
|- F/ z ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) |
| 24 |
3 4
|
sbhypf |
|- ( w = <. y , z >. -> ( [ w / x ] ph <-> ps ) ) |
| 25 |
|
vex |
|- y e. _V |
| 26 |
|
vex |
|- z e. _V |
| 27 |
25 26
|
opth |
|- ( <. y , z >. = <. u , v >. <-> ( y = u /\ z = v ) ) |
| 28 |
|
sbequ12 |
|- ( z = v -> ( [ u / y ] ps <-> [ v / z ] [ u / y ] ps ) ) |
| 29 |
12 28
|
sylan9bb |
|- ( ( y = u /\ z = v ) -> ( ps <-> [ v / z ] [ u / y ] ps ) ) |
| 30 |
27 29
|
sylbi |
|- ( <. y , z >. = <. u , v >. -> ( ps <-> [ v / z ] [ u / y ] ps ) ) |
| 31 |
24 30
|
sylan9bb |
|- ( ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 32 |
23 31
|
exlimi |
|- ( E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 33 |
20 32
|
exlimi |
|- ( E. y E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 34 |
17 33
|
sylbi |
|- ( w = <. u , v >. -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) |
| 35 |
34
|
ralxp |
|- ( A. w e. ( A X. B ) [ w / x ] ph <-> A. u e. A A. v e. B [ v / z ] [ u / y ] ps ) |
| 36 |
7 14 35
|
3bitr4ri |
|- ( A. w e. ( A X. B ) [ w / x ] ph <-> A. y e. A A. z e. B ps ) |
| 37 |
5 36
|
bitri |
|- ( A. x e. ( A X. B ) ph <-> A. y e. A A. z e. B ps ) |