Metamath Proof Explorer


Theorem nfsbv

Description: If z is not free in ph , it is not free in [ y / x ] ph when z is distinct from x and y . Version of nfsb requiring more disjoint variables, but fewer axioms. (Contributed by Mario Carneiro, 11-Aug-2016) (Revised by Wolf Lammen, 7-Feb-2023) Remove disjoint variable condition on x , y . (Revised by Steven Nguyen, 13-Aug-2023)

Ref Expression
Hypothesis nfsbv.nf
|- F/ z ph
Assertion nfsbv
|- F/ z [ y / x ] ph

Proof

Step Hyp Ref Expression
1 nfsbv.nf
 |-  F/ z ph
2 df-sb
 |-  ( [ y / x ] ph <-> A. w ( w = y -> A. x ( x = w -> ph ) ) )
3 nfv
 |-  F/ z w = y
4 nfv
 |-  F/ z x = w
5 4 1 nfim
 |-  F/ z ( x = w -> ph )
6 5 nfal
 |-  F/ z A. x ( x = w -> ph )
7 3 6 nfim
 |-  F/ z ( w = y -> A. x ( x = w -> ph ) )
8 7 nfal
 |-  F/ z A. w ( w = y -> A. x ( x = w -> ph ) )
9 2 8 nfxfr
 |-  F/ z [ y / x ] ph