Metamath Proof Explorer


Theorem hbsbw

Description: If z is not free in ph , it is not free in [ y / x ] ph when y and z are distinct. Version of hbsb with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 12-Aug-1993) (Revised by Gino Giotto, 23-May-2024) (Proof shortened by Wolf Lammen, 14-May-2025)

Ref Expression
Hypothesis hbsbw.1
|- ( ph -> A. z ph )
Assertion hbsbw
|- ( [ y / x ] ph -> A. z [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 hbsbw.1
 |-  ( ph -> A. z ph )
2 1 sbimi
 |-  ( [ y / x ] ph -> [ y / x ] A. z ph )
3 sbal
 |-  ( [ y / x ] A. z ph <-> A. z [ y / x ] ph )
4 2 3 sylib
 |-  ( [ y / x ] ph -> A. z [ y / x ] ph )