Step |
Hyp |
Ref |
Expression |
1 |
|
hbsbw.1 |
|- ( ph -> A. z ph ) |
2 |
|
df-sb |
|- ( [ y / x ] ph <-> A. w ( w = y -> A. x ( x = w -> ph ) ) ) |
3 |
1
|
imim2i |
|- ( ( x = w -> ph ) -> ( x = w -> A. z ph ) ) |
4 |
3
|
alimi |
|- ( A. x ( x = w -> ph ) -> A. x ( x = w -> A. z ph ) ) |
5 |
|
19.21v |
|- ( A. z ( x = w -> ph ) <-> ( x = w -> A. z ph ) ) |
6 |
5
|
biimpri |
|- ( ( x = w -> A. z ph ) -> A. z ( x = w -> ph ) ) |
7 |
6
|
alimi |
|- ( A. x ( x = w -> A. z ph ) -> A. x A. z ( x = w -> ph ) ) |
8 |
|
ax-11 |
|- ( A. x A. z ( x = w -> ph ) -> A. z A. x ( x = w -> ph ) ) |
9 |
4 7 8
|
3syl |
|- ( A. x ( x = w -> ph ) -> A. z A. x ( x = w -> ph ) ) |
10 |
9
|
imim2i |
|- ( ( w = y -> A. x ( x = w -> ph ) ) -> ( w = y -> A. z A. x ( x = w -> ph ) ) ) |
11 |
|
19.21v |
|- ( A. z ( w = y -> A. x ( x = w -> ph ) ) <-> ( w = y -> A. z A. x ( x = w -> ph ) ) ) |
12 |
10 11
|
sylibr |
|- ( ( w = y -> A. x ( x = w -> ph ) ) -> A. z ( w = y -> A. x ( x = w -> ph ) ) ) |
13 |
12
|
hbal |
|- ( A. w ( w = y -> A. x ( x = w -> ph ) ) -> A. z A. w ( w = y -> A. x ( x = w -> ph ) ) ) |
14 |
2 13
|
hbxfrbi |
|- ( [ y / x ] ph -> A. z [ y / x ] ph ) |