Metamath Proof Explorer


Theorem nfa2

Description: Lemma 24 of Monk2 p. 114. (Contributed by Mario Carneiro, 24-Sep-2016) Remove dependency on ax-12 . (Revised by Wolf Lammen, 18-Oct-2021)

Ref Expression
Assertion nfa2
|- F/ x A. y A. x ph

Proof

Step Hyp Ref Expression
1 alcom
 |-  ( A. y A. x ph <-> A. x A. y ph )
2 nfa1
 |-  F/ x A. x A. y ph
3 1 2 nfxfr
 |-  F/ x A. y A. x ph