Step |
Hyp |
Ref |
Expression |
1 |
|
frpoins3xp3g.1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( ∀ 𝑤 ∀ 𝑡 ∀ 𝑢 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) → 𝜑 ) ) |
2 |
|
frpoins3xp3g.2 |
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
frpoins3xp3g.3 |
⊢ ( 𝑦 = 𝑡 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
frpoins3xp3g.4 |
⊢ ( 𝑧 = 𝑢 → ( 𝜒 ↔ 𝜃 ) ) |
5 |
|
frpoins3xp3g.5 |
⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ 𝜏 ) ) |
6 |
|
frpoins3xp3g.6 |
⊢ ( 𝑦 = 𝑌 → ( 𝜏 ↔ 𝜂 ) ) |
7 |
|
frpoins3xp3g.7 |
⊢ ( 𝑧 = 𝑍 → ( 𝜂 ↔ 𝜁 ) ) |
8 |
2
|
sbcbidv |
⊢ ( 𝑥 = 𝑤 → ( [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ↔ [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜓 ) ) |
9 |
8
|
sbcbidv |
⊢ ( 𝑥 = 𝑤 → ( [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ↔ [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜓 ) ) |
10 |
9
|
cbvsbcvw |
⊢ ( [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ↔ [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜓 ) |
11 |
3
|
sbcbidv |
⊢ ( 𝑦 = 𝑡 → ( [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜓 ↔ [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜒 ) ) |
12 |
11
|
cbvsbcvw |
⊢ ( [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜓 ↔ [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜒 ) |
13 |
4
|
cbvsbcvw |
⊢ ( [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜒 ↔ [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
14 |
13
|
sbcbii |
⊢ ( [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜒 ↔ [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
15 |
12 14
|
bitri |
⊢ ( [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜓 ↔ [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
16 |
15
|
sbcbii |
⊢ ( [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜓 ↔ [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
17 |
10 16
|
bitri |
⊢ ( [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ↔ [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
18 |
17
|
ralbii |
⊢ ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ↔ ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
19 |
|
elxpxp |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
21 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 |
22 |
20 21
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) |
23 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
24 |
|
nfv |
⊢ Ⅎ 𝑦 ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
25 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 1st ‘ ( 1st ‘ 𝑝 ) ) |
26 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 |
27 |
25 26
|
nfsbcw |
⊢ Ⅎ 𝑦 [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 |
28 |
24 27
|
nfim |
⊢ Ⅎ 𝑦 ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) |
29 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
30 |
|
nfv |
⊢ Ⅎ 𝑧 ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
31 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 1st ‘ ( 1st ‘ 𝑝 ) ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 2nd ‘ ( 1st ‘ 𝑝 ) ) |
33 |
|
nfsbc1v |
⊢ Ⅎ 𝑧 [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 |
34 |
32 33
|
nfsbcw |
⊢ Ⅎ 𝑧 [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 |
35 |
31 34
|
nfsbcw |
⊢ Ⅎ 𝑧 [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 |
36 |
30 35
|
nfim |
⊢ Ⅎ 𝑧 ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) |
37 |
|
impexp |
⊢ ( ( ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ↔ ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) ) |
38 |
|
elin |
⊢ ( 𝑞 ∈ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ↔ ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ) |
39 |
|
predss |
⊢ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) |
40 |
|
sseqin2 |
⊢ ( Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) = Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) |
41 |
39 40
|
mpbi |
⊢ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) = Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) |
42 |
41
|
eleq2i |
⊢ ( 𝑞 ∈ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ↔ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) |
43 |
38 42
|
bitr3i |
⊢ ( ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ↔ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) |
44 |
43
|
imbi1i |
⊢ ( ( ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ↔ ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) |
45 |
37 44
|
bitr3i |
⊢ ( ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) ↔ ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) |
46 |
45
|
albii |
⊢ ( ∀ 𝑞 ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) ↔ ∀ 𝑞 ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) |
47 |
|
r3al |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑡 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ↔ ∀ 𝑤 ∀ 𝑡 ∀ 𝑢 ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
48 |
|
nfv |
⊢ Ⅎ 𝑤 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) |
49 |
|
nfsbc1v |
⊢ Ⅎ 𝑤 [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
50 |
48 49
|
nfim |
⊢ Ⅎ 𝑤 ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
51 |
|
nfv |
⊢ Ⅎ 𝑡 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) |
52 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 1st ‘ ( 1st ‘ 𝑞 ) ) |
53 |
|
nfsbc1v |
⊢ Ⅎ 𝑡 [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
54 |
52 53
|
nfsbcw |
⊢ Ⅎ 𝑡 [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
55 |
51 54
|
nfim |
⊢ Ⅎ 𝑡 ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
56 |
|
nfv |
⊢ Ⅎ 𝑢 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) |
57 |
|
nfcv |
⊢ Ⅎ 𝑢 ( 1st ‘ ( 1st ‘ 𝑞 ) ) |
58 |
|
nfcv |
⊢ Ⅎ 𝑢 ( 2nd ‘ ( 1st ‘ 𝑞 ) ) |
59 |
|
nfsbc1v |
⊢ Ⅎ 𝑢 [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
60 |
58 59
|
nfsbcw |
⊢ Ⅎ 𝑢 [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
61 |
57 60
|
nfsbcw |
⊢ Ⅎ 𝑢 [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 |
62 |
56 61
|
nfim |
⊢ Ⅎ 𝑢 ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) |
63 |
|
nfv |
⊢ Ⅎ 𝑞 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) |
64 |
|
eleq1 |
⊢ ( 𝑞 = 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 → ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ↔ 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ) |
65 |
|
sbcoteq1a |
⊢ ( 𝑞 = 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 → ( [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ↔ 𝜃 ) ) |
66 |
64 65
|
imbi12d |
⊢ ( 𝑞 = 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 → ( ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ↔ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
67 |
50 55 62 63 66
|
ralxp3f |
⊢ ( ∀ 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑡 ∈ 𝐵 ∀ 𝑢 ∈ 𝐶 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) |
68 |
|
elin |
⊢ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ↔ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ) |
69 |
41
|
eleq2i |
⊢ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ↔ 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) |
70 |
68 69
|
bitr3i |
⊢ ( ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) ↔ 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) |
71 |
70
|
imbi1i |
⊢ ( ( ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) → 𝜃 ) ↔ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) |
72 |
|
impexp |
⊢ ( ( ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) → 𝜃 ) ↔ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
73 |
71 72
|
bitr3i |
⊢ ( ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ↔ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
74 |
|
ot2elxp |
⊢ ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐶 ) ) |
75 |
74
|
imbi1i |
⊢ ( ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
76 |
73 75
|
bitri |
⊢ ( ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
77 |
76
|
albii |
⊢ ( ∀ 𝑢 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ↔ ∀ 𝑢 ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
78 |
77
|
2albii |
⊢ ( ∀ 𝑤 ∀ 𝑡 ∀ 𝑢 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ↔ ∀ 𝑤 ∀ 𝑡 ∀ 𝑢 ( ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐶 ) → ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) ) |
79 |
47 67 78
|
3bitr4ri |
⊢ ( ∀ 𝑤 ∀ 𝑡 ∀ 𝑢 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ↔ ∀ 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) |
80 |
|
df-ral |
⊢ ( ∀ 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ↔ ∀ 𝑞 ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) ) |
81 |
79 80
|
bitri |
⊢ ( ∀ 𝑤 ∀ 𝑡 ∀ 𝑢 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ↔ ∀ 𝑞 ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) ) |
82 |
|
df-ral |
⊢ ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ↔ ∀ 𝑞 ( 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) |
83 |
46 81 82
|
3bitr4ri |
⊢ ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ↔ ∀ 𝑤 ∀ 𝑡 ∀ 𝑢 ( 〈 〈 𝑤 , 𝑡 〉 , 𝑢 〉 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) → 𝜃 ) ) |
84 |
83 1
|
syl5bi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → 𝜑 ) ) |
85 |
|
predeq3 |
⊢ ( 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) = Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) ) |
86 |
85
|
raleqdv |
⊢ ( 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ↔ ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 ) ) |
87 |
|
sbcoteq1a |
⊢ ( 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ↔ 𝜑 ) ) |
88 |
86 87
|
imbi12d |
⊢ ( 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ↔ ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → 𝜑 ) ) ) |
89 |
84 88
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) ) |
90 |
89
|
3expia |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐶 → ( 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) ) ) |
91 |
29 36 90
|
rexlimd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑧 ∈ 𝐶 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) ) |
92 |
91
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( ∃ 𝑧 ∈ 𝐶 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) ) ) |
93 |
23 28 92
|
rexlimd |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) ) |
94 |
22 93
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑝 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) |
95 |
19 94
|
sylbi |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑤 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑡 ] [ ( 2nd ‘ 𝑞 ) / 𝑢 ] 𝜃 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) |
96 |
18 95
|
syl5bi |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( ∀ 𝑞 ∈ Pred ( 𝑅 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 𝑝 ) [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 → [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) ) |
97 |
|
2fveq3 |
⊢ ( 𝑝 = 𝑞 → ( 1st ‘ ( 1st ‘ 𝑝 ) ) = ( 1st ‘ ( 1st ‘ 𝑞 ) ) ) |
98 |
|
2fveq3 |
⊢ ( 𝑝 = 𝑞 → ( 2nd ‘ ( 1st ‘ 𝑝 ) ) = ( 2nd ‘ ( 1st ‘ 𝑞 ) ) ) |
99 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ 𝑞 ) ) |
100 |
99
|
sbceq1d |
⊢ ( 𝑝 = 𝑞 → ( [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ↔ [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ) ) |
101 |
98 100
|
sbceqbid |
⊢ ( 𝑝 = 𝑞 → ( [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ↔ [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ) ) |
102 |
97 101
|
sbceqbid |
⊢ ( 𝑝 = 𝑞 → ( [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ↔ [ ( 1st ‘ ( 1st ‘ 𝑞 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑞 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑞 ) / 𝑧 ] 𝜑 ) ) |
103 |
96 102
|
frpoins2g |
⊢ ( ( 𝑅 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑅 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑅 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ∀ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ) |
104 |
|
ralxp3es |
⊢ ( ∀ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) [ ( 1st ‘ ( 1st ‘ 𝑝 ) ) / 𝑥 ] [ ( 2nd ‘ ( 1st ‘ 𝑝 ) ) / 𝑦 ] [ ( 2nd ‘ 𝑝 ) / 𝑧 ] 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ) |
105 |
103 104
|
sylib |
⊢ ( ( 𝑅 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑅 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑅 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ) |
106 |
5 6 7
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 → 𝜁 ) ) |
107 |
105 106
|
mpan9 |
⊢ ( ( ( 𝑅 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑅 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑅 Se ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) ) → 𝜁 ) |