Metamath Proof Explorer


Theorem frpoins3xp3g

Description: Special case of founded partial recursion over a triple cross product. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses frpoins3xp3g.1 x A y B z C w t u w t u Pred R A × B × C x y z θ φ
frpoins3xp3g.2 x = w φ ψ
frpoins3xp3g.3 y = t ψ χ
frpoins3xp3g.4 z = u χ θ
frpoins3xp3g.5 x = X φ τ
frpoins3xp3g.6 y = Y τ η
frpoins3xp3g.7 z = Z η ζ
Assertion frpoins3xp3g R Fr A × B × C R Po A × B × C R Se A × B × C X A Y B Z C ζ

Proof

Step Hyp Ref Expression
1 frpoins3xp3g.1 x A y B z C w t u w t u Pred R A × B × C x y z θ φ
2 frpoins3xp3g.2 x = w φ ψ
3 frpoins3xp3g.3 y = t ψ χ
4 frpoins3xp3g.4 z = u χ θ
5 frpoins3xp3g.5 x = X φ τ
6 frpoins3xp3g.6 y = Y τ η
7 frpoins3xp3g.7 z = Z η ζ
8 2 sbcbidv x = w [˙ 2 nd q / z]˙ φ [˙ 2 nd q / z]˙ ψ
9 8 sbcbidv x = w [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ φ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ ψ
10 9 cbvsbcvw [˙ 1 st 1 st q / x]˙ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ φ [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ ψ
11 3 sbcbidv y = t [˙ 2 nd q / z]˙ ψ [˙ 2 nd q / z]˙ χ
12 11 cbvsbcvw [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ ψ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / z]˙ χ
13 4 cbvsbcvw [˙ 2 nd q / z]˙ χ [˙ 2 nd q / u]˙ θ
14 13 sbcbii [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / z]˙ χ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
15 12 14 bitri [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ ψ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
16 15 sbcbii [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ ψ [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
17 10 16 bitri [˙ 1 st 1 st q / x]˙ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ φ [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
18 17 ralbii q Pred R A × B × C p [˙ 1 st 1 st q / x]˙ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ φ q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
19 elxpxp p A × B × C x A y B z C p = x y z
20 nfv x q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
21 nfsbc1v x [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
22 20 21 nfim x q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
23 nfv y x A
24 nfv y q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
25 nfcv _ y 1 st 1 st p
26 nfsbc1v y [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
27 25 26 nfsbcw y [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
28 24 27 nfim y q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
29 nfv z x A y B
30 nfv z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
31 nfcv _ z 1 st 1 st p
32 nfcv _ z 2 nd 1 st p
33 nfsbc1v z [˙ 2 nd p / z]˙ φ
34 32 33 nfsbcw z [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
35 31 34 nfsbcw z [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
36 30 35 nfim z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
37 impexp q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
38 elin q A × B × C Pred R A × B × C x y z q A × B × C q Pred R A × B × C x y z
39 predss Pred R A × B × C x y z A × B × C
40 sseqin2 Pred R A × B × C x y z A × B × C A × B × C Pred R A × B × C x y z = Pred R A × B × C x y z
41 39 40 mpbi A × B × C Pred R A × B × C x y z = Pred R A × B × C x y z
42 41 eleq2i q A × B × C Pred R A × B × C x y z q Pred R A × B × C x y z
43 38 42 bitr3i q A × B × C q Pred R A × B × C x y z q Pred R A × B × C x y z
44 43 imbi1i q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
45 37 44 bitr3i q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
46 45 albii q q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ q q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
47 r3al w A t B u C w t u Pred R A × B × C x y z θ w t u w A t B u C w t u Pred R A × B × C x y z θ
48 nfv w q Pred R A × B × C x y z
49 nfsbc1v w [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
50 48 49 nfim w q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
51 nfv t q Pred R A × B × C x y z
52 nfcv _ t 1 st 1 st q
53 nfsbc1v t [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
54 52 53 nfsbcw t [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
55 51 54 nfim t q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
56 nfv u q Pred R A × B × C x y z
57 nfcv _ u 1 st 1 st q
58 nfcv _ u 2 nd 1 st q
59 nfsbc1v u [˙ 2 nd q / u]˙ θ
60 58 59 nfsbcw u [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
61 57 60 nfsbcw u [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
62 56 61 nfim u q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
63 nfv q w t u Pred R A × B × C x y z θ
64 eleq1 q = w t u q Pred R A × B × C x y z w t u Pred R A × B × C x y z
65 sbcoteq1a q = w t u [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ θ
66 64 65 imbi12d q = w t u q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ w t u Pred R A × B × C x y z θ
67 50 55 62 63 66 ralxp3f q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ w A t B u C w t u Pred R A × B × C x y z θ
68 elin w t u A × B × C Pred R A × B × C x y z w t u A × B × C w t u Pred R A × B × C x y z
69 41 eleq2i w t u A × B × C Pred R A × B × C x y z w t u Pred R A × B × C x y z
70 68 69 bitr3i w t u A × B × C w t u Pred R A × B × C x y z w t u Pred R A × B × C x y z
71 70 imbi1i w t u A × B × C w t u Pred R A × B × C x y z θ w t u Pred R A × B × C x y z θ
72 impexp w t u A × B × C w t u Pred R A × B × C x y z θ w t u A × B × C w t u Pred R A × B × C x y z θ
73 71 72 bitr3i w t u Pred R A × B × C x y z θ w t u A × B × C w t u Pred R A × B × C x y z θ
74 ot2elxp w t u A × B × C w A t B u C
75 74 imbi1i w t u A × B × C w t u Pred R A × B × C x y z θ w A t B u C w t u Pred R A × B × C x y z θ
76 73 75 bitri w t u Pred R A × B × C x y z θ w A t B u C w t u Pred R A × B × C x y z θ
77 76 albii u w t u Pred R A × B × C x y z θ u w A t B u C w t u Pred R A × B × C x y z θ
78 77 2albii w t u w t u Pred R A × B × C x y z θ w t u w A t B u C w t u Pred R A × B × C x y z θ
79 47 67 78 3bitr4ri w t u w t u Pred R A × B × C x y z θ q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
80 df-ral q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ q q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
81 79 80 bitri w t u w t u Pred R A × B × C x y z θ q q A × B × C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
82 df-ral q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ q q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
83 46 81 82 3bitr4ri q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ w t u w t u Pred R A × B × C x y z θ
84 83 1 syl5bi x A y B z C q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ φ
85 predeq3 p = x y z Pred R A × B × C p = Pred R A × B × C x y z
86 85 raleqdv p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ
87 sbcoteq1a p = x y z [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ φ
88 86 87 imbi12d p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ q Pred R A × B × C x y z [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ φ
89 84 88 syl5ibrcom x A y B z C p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
90 89 3expia x A y B z C p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
91 29 36 90 rexlimd x A y B z C p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
92 91 ex x A y B z C p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
93 23 28 92 rexlimd x A y B z C p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
94 22 93 rexlimi x A y B z C p = x y z q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
95 19 94 sylbi p A × B × C q Pred R A × B × C p [˙ 1 st 1 st q / w]˙ [˙ 2 nd 1 st q / t]˙ [˙ 2 nd q / u]˙ θ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
96 18 95 syl5bi p A × B × C q Pred R A × B × C p [˙ 1 st 1 st q / x]˙ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ φ [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
97 2fveq3 p = q 1 st 1 st p = 1 st 1 st q
98 2fveq3 p = q 2 nd 1 st p = 2 nd 1 st q
99 fveq2 p = q 2 nd p = 2 nd q
100 99 sbceq1d p = q [˙ 2 nd p / z]˙ φ [˙ 2 nd q / z]˙ φ
101 98 100 sbceqbid p = q [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ φ
102 97 101 sbceqbid p = q [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ [˙ 1 st 1 st q / x]˙ [˙ 2 nd 1 st q / y]˙ [˙ 2 nd q / z]˙ φ
103 96 102 frpoins2g R Fr A × B × C R Po A × B × C R Se A × B × C p A × B × C [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ
104 ralxp3es p A × B × C [˙ 1 st 1 st p / x]˙ [˙ 2 nd 1 st p / y]˙ [˙ 2 nd p / z]˙ φ x A y B z C φ
105 103 104 sylib R Fr A × B × C R Po A × B × C R Se A × B × C x A y B z C φ
106 5 6 7 rspc3v X A Y B Z C x A y B z C φ ζ
107 105 106 mpan9 R Fr A × B × C R Po A × B × C R Se A × B × C X A Y B Z C ζ