Metamath Proof Explorer


Theorem r3al

Description: Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995) (Proof shortened by Wolf Lammen, 30-Dec-2019)

Ref Expression
Assertion r3al xAyBzCφxyzxAyBzCφ

Proof

Step Hyp Ref Expression
1 r2al xAyBzCφxyxAyBzCφ
2 19.21v zxAyBzCφxAyBzzCφ
3 df-3an xAyBzCxAyBzC
4 3 imbi1i xAyBzCφxAyBzCφ
5 impexp xAyBzCφxAyBzCφ
6 4 5 bitri xAyBzCφxAyBzCφ
7 6 albii zxAyBzCφzxAyBzCφ
8 df-ral zCφzzCφ
9 8 imbi2i xAyBzCφxAyBzzCφ
10 2 7 9 3bitr4ri xAyBzCφzxAyBzCφ
11 10 2albii xyxAyBzCφxyzxAyBzCφ
12 1 11 bitri xAyBzCφxyzxAyBzCφ