Metamath Proof Explorer


Theorem cbvsbcvw

Description: Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Sep-2008) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvsbcvw.1 x=yφψ
Assertion cbvsbcvw [˙A/x]˙φ[˙A/y]˙ψ

Proof

Step Hyp Ref Expression
1 cbvsbcvw.1 x=yφψ
2 1 cbvabv x|φ=y|ψ
3 2 eleq2i Ax|φAy|ψ
4 df-sbc [˙A/x]˙φAx|φ
5 df-sbc [˙A/y]˙ψAy|ψ
6 3 4 5 3bitr4i [˙A/x]˙φ[˙A/y]˙ψ