Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Misc. Useful Theorems
elxpxp
Next ⟩
elxpxpss
Metamath Proof Explorer
Ascii
Unicode
Theorem
elxpxp
Description:
Membership in a triple cross product.
(Contributed by
Scott Fenton
, 21-Aug-2024)
Ref
Expression
Assertion
elxpxp
⊢
A
∈
B
×
C
×
D
↔
∃
x
∈
B
∃
y
∈
C
∃
z
∈
D
A
=
x
y
z
Proof
Step
Hyp
Ref
Expression
1
elxp2
⊢
A
∈
B
×
C
×
D
↔
∃
p
∈
B
×
C
∃
z
∈
D
A
=
p
z
2
opeq1
⊢
p
=
x
y
→
p
z
=
x
y
z
3
2
eqeq2d
⊢
p
=
x
y
→
A
=
p
z
↔
A
=
x
y
z
4
3
rexbidv
⊢
p
=
x
y
→
∃
z
∈
D
A
=
p
z
↔
∃
z
∈
D
A
=
x
y
z
5
4
rexxp
⊢
∃
p
∈
B
×
C
∃
z
∈
D
A
=
p
z
↔
∃
x
∈
B
∃
y
∈
C
∃
z
∈
D
A
=
x
y
z
6
1
5
bitri
⊢
A
∈
B
×
C
×
D
↔
∃
x
∈
B
∃
y
∈
C
∃
z
∈
D
A
=
x
y
z