Metamath Proof Explorer


Theorem elxpxp

Description: Membership in a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Assertion elxpxp A B × C × D x B y C z D A = x y z

Proof

Step Hyp Ref Expression
1 elxp2 A B × C × D p B × C z D A = p z
2 opeq1 p = x y p z = x y z
3 2 eqeq2d p = x y A = p z A = x y z
4 3 rexbidv p = x y z D A = p z z D A = x y z
5 4 rexxp p B × C z D A = p z x B y C z D A = x y z
6 1 5 bitri A B × C × D x B y C z D A = x y z