| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frpoins3xp3g.1 |
|- ( ( x e. A /\ y e. B /\ z e. C ) -> ( A. w A. t A. u ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) -> ph ) ) |
| 2 |
|
frpoins3xp3g.2 |
|- ( x = w -> ( ph <-> ps ) ) |
| 3 |
|
frpoins3xp3g.3 |
|- ( y = t -> ( ps <-> ch ) ) |
| 4 |
|
frpoins3xp3g.4 |
|- ( z = u -> ( ch <-> th ) ) |
| 5 |
|
frpoins3xp3g.5 |
|- ( x = X -> ( ph <-> ta ) ) |
| 6 |
|
frpoins3xp3g.6 |
|- ( y = Y -> ( ta <-> et ) ) |
| 7 |
|
frpoins3xp3g.7 |
|- ( z = Z -> ( et <-> ze ) ) |
| 8 |
2
|
sbcbidv |
|- ( x = w -> ( [. ( 2nd ` q ) / z ]. ph <-> [. ( 2nd ` q ) / z ]. ps ) ) |
| 9 |
8
|
sbcbidv |
|- ( x = w -> ( [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ph <-> [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ps ) ) |
| 10 |
9
|
cbvsbcvw |
|- ( [. ( 1st ` ( 1st ` q ) ) / x ]. [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ph <-> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ps ) |
| 11 |
3
|
sbcbidv |
|- ( y = t -> ( [. ( 2nd ` q ) / z ]. ps <-> [. ( 2nd ` q ) / z ]. ch ) ) |
| 12 |
11
|
cbvsbcvw |
|- ( [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ps <-> [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / z ]. ch ) |
| 13 |
4
|
cbvsbcvw |
|- ( [. ( 2nd ` q ) / z ]. ch <-> [. ( 2nd ` q ) / u ]. th ) |
| 14 |
13
|
sbcbii |
|- ( [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / z ]. ch <-> [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 15 |
12 14
|
bitri |
|- ( [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ps <-> [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 16 |
15
|
sbcbii |
|- ( [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ps <-> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 17 |
10 16
|
bitri |
|- ( [. ( 1st ` ( 1st ` q ) ) / x ]. [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ph <-> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 18 |
17
|
ralbii |
|- ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / x ]. [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ph <-> A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 19 |
|
el2xptp |
|- ( p e. ( ( A X. B ) X. C ) <-> E. x e. A E. y e. B E. z e. C p = <. x , y , z >. ) |
| 20 |
|
nfv |
|- F/ x A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 21 |
|
nfsbc1v |
|- F/ x [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph |
| 22 |
20 21
|
nfim |
|- F/ x ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) |
| 23 |
|
nfv |
|- F/ y x e. A |
| 24 |
|
nfv |
|- F/ y A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 25 |
|
nfcv |
|- F/_ y ( 1st ` ( 1st ` p ) ) |
| 26 |
|
nfsbc1v |
|- F/ y [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph |
| 27 |
25 26
|
nfsbcw |
|- F/ y [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph |
| 28 |
24 27
|
nfim |
|- F/ y ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) |
| 29 |
|
nfv |
|- F/ z ( x e. A /\ y e. B ) |
| 30 |
|
nfv |
|- F/ z A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 31 |
|
nfcv |
|- F/_ z ( 1st ` ( 1st ` p ) ) |
| 32 |
|
nfcv |
|- F/_ z ( 2nd ` ( 1st ` p ) ) |
| 33 |
|
nfsbc1v |
|- F/ z [. ( 2nd ` p ) / z ]. ph |
| 34 |
32 33
|
nfsbcw |
|- F/ z [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph |
| 35 |
31 34
|
nfsbcw |
|- F/ z [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph |
| 36 |
30 35
|
nfim |
|- F/ z ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) |
| 37 |
|
predss |
|- Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) C_ ( ( A X. B ) X. C ) |
| 38 |
|
sseqin2 |
|- ( Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) C_ ( ( A X. B ) X. C ) <-> ( ( ( A X. B ) X. C ) i^i Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) = Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) |
| 39 |
37 38
|
mpbi |
|- ( ( ( A X. B ) X. C ) i^i Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) = Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) |
| 40 |
39
|
eleq2i |
|- ( q e. ( ( ( A X. B ) X. C ) i^i Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) <-> q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) |
| 41 |
40
|
bicomi |
|- ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) <-> q e. ( ( ( A X. B ) X. C ) i^i Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) ) |
| 42 |
|
elin |
|- ( q e. ( ( ( A X. B ) X. C ) i^i Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) <-> ( q e. ( ( A X. B ) X. C ) /\ q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) ) |
| 43 |
41 42
|
bitri |
|- ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) <-> ( q e. ( ( A X. B ) X. C ) /\ q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) ) |
| 44 |
43
|
imbi1i |
|- ( ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) <-> ( ( q e. ( ( A X. B ) X. C ) /\ q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) |
| 45 |
|
impexp |
|- ( ( ( q e. ( ( A X. B ) X. C ) /\ q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) <-> ( q e. ( ( A X. B ) X. C ) -> ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) ) |
| 46 |
44 45
|
bitri |
|- ( ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) <-> ( q e. ( ( A X. B ) X. C ) -> ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) ) |
| 47 |
46
|
albii |
|- ( A. q ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) <-> A. q ( q e. ( ( A X. B ) X. C ) -> ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) ) |
| 48 |
47
|
bicomi |
|- ( A. q ( q e. ( ( A X. B ) X. C ) -> ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) <-> A. q ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) |
| 49 |
|
r3al |
|- ( A. w e. A A. t e. B A. u e. C ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) <-> A. w A. t A. u ( ( w e. A /\ t e. B /\ u e. C ) -> ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) ) ) |
| 50 |
|
nfv |
|- F/ w q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) |
| 51 |
|
nfsbc1v |
|- F/ w [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 52 |
50 51
|
nfim |
|- F/ w ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 53 |
|
nfv |
|- F/ t q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) |
| 54 |
|
nfcv |
|- F/_ t ( 1st ` ( 1st ` q ) ) |
| 55 |
|
nfsbc1v |
|- F/ t [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 56 |
54 55
|
nfsbcw |
|- F/ t [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 57 |
53 56
|
nfim |
|- F/ t ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 58 |
|
nfv |
|- F/ u q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) |
| 59 |
|
nfcv |
|- F/_ u ( 1st ` ( 1st ` q ) ) |
| 60 |
|
nfcv |
|- F/_ u ( 2nd ` ( 1st ` q ) ) |
| 61 |
|
nfsbc1v |
|- F/ u [. ( 2nd ` q ) / u ]. th |
| 62 |
60 61
|
nfsbcw |
|- F/ u [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 63 |
59 62
|
nfsbcw |
|- F/ u [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th |
| 64 |
58 63
|
nfim |
|- F/ u ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) |
| 65 |
|
nfv |
|- F/ q ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) |
| 66 |
|
eleq1 |
|- ( q = <. w , t , u >. -> ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) <-> <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) ) |
| 67 |
|
sbcoteq1a |
|- ( q = <. w , t , u >. -> ( [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th <-> th ) ) |
| 68 |
66 67
|
imbi12d |
|- ( q = <. w , t , u >. -> ( ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) <-> ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) ) ) |
| 69 |
52 57 64 65 68
|
ralxp3f |
|- ( A. q e. ( ( A X. B ) X. C ) ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) <-> A. w e. A A. t e. B A. u e. C ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) ) |
| 70 |
|
elin |
|- ( <. w , t , u >. e. ( ( ( A X. B ) X. C ) i^i Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) <-> ( <. w , t , u >. e. ( ( A X. B ) X. C ) /\ <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) ) |
| 71 |
39
|
eleq2i |
|- ( <. w , t , u >. e. ( ( ( A X. B ) X. C ) i^i Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) <-> <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) |
| 72 |
|
otelxp |
|- ( <. w , t , u >. e. ( ( A X. B ) X. C ) <-> ( w e. A /\ t e. B /\ u e. C ) ) |
| 73 |
72
|
anbi1i |
|- ( ( <. w , t , u >. e. ( ( A X. B ) X. C ) /\ <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) <-> ( ( w e. A /\ t e. B /\ u e. C ) /\ <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) ) |
| 74 |
70 71 73
|
3bitr3i |
|- ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) <-> ( ( w e. A /\ t e. B /\ u e. C ) /\ <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) ) |
| 75 |
74
|
imbi1i |
|- ( ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) <-> ( ( ( w e. A /\ t e. B /\ u e. C ) /\ <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) -> th ) ) |
| 76 |
|
impexp |
|- ( ( ( ( w e. A /\ t e. B /\ u e. C ) /\ <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) -> th ) <-> ( ( w e. A /\ t e. B /\ u e. C ) -> ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) ) ) |
| 77 |
75 76
|
bitri |
|- ( ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) <-> ( ( w e. A /\ t e. B /\ u e. C ) -> ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) ) ) |
| 78 |
77
|
3albii |
|- ( A. w A. t A. u ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) <-> A. w A. t A. u ( ( w e. A /\ t e. B /\ u e. C ) -> ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) ) ) |
| 79 |
49 69 78
|
3bitr4ri |
|- ( A. w A. t A. u ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) <-> A. q e. ( ( A X. B ) X. C ) ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) |
| 80 |
|
df-ral |
|- ( A. q e. ( ( A X. B ) X. C ) ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) <-> A. q ( q e. ( ( A X. B ) X. C ) -> ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) ) |
| 81 |
79 80
|
bitri |
|- ( A. w A. t A. u ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) <-> A. q ( q e. ( ( A X. B ) X. C ) -> ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) ) |
| 82 |
|
df-ral |
|- ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th <-> A. q ( q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) |
| 83 |
48 81 82
|
3bitr4ri |
|- ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th <-> A. w A. t A. u ( <. w , t , u >. e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) -> th ) ) |
| 84 |
83 1
|
biimtrid |
|- ( ( x e. A /\ y e. B /\ z e. C ) -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> ph ) ) |
| 85 |
|
predeq3 |
|- ( p = <. x , y , z >. -> Pred ( R , ( ( A X. B ) X. C ) , p ) = Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) ) |
| 86 |
85
|
raleqdv |
|- ( p = <. x , y , z >. -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th <-> A. q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th ) ) |
| 87 |
|
sbcoteq1a |
|- ( p = <. x , y , z >. -> ( [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph <-> ph ) ) |
| 88 |
86 87
|
imbi12d |
|- ( p = <. x , y , z >. -> ( ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) <-> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , <. x , y , z >. ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> ph ) ) ) |
| 89 |
84 88
|
syl5ibrcom |
|- ( ( x e. A /\ y e. B /\ z e. C ) -> ( p = <. x , y , z >. -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) ) |
| 90 |
89
|
3expia |
|- ( ( x e. A /\ y e. B ) -> ( z e. C -> ( p = <. x , y , z >. -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) ) ) |
| 91 |
29 36 90
|
rexlimd |
|- ( ( x e. A /\ y e. B ) -> ( E. z e. C p = <. x , y , z >. -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) ) |
| 92 |
91
|
ex |
|- ( x e. A -> ( y e. B -> ( E. z e. C p = <. x , y , z >. -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) ) ) |
| 93 |
23 28 92
|
rexlimd |
|- ( x e. A -> ( E. y e. B E. z e. C p = <. x , y , z >. -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) ) |
| 94 |
22 93
|
rexlimi |
|- ( E. x e. A E. y e. B E. z e. C p = <. x , y , z >. -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) |
| 95 |
19 94
|
sylbi |
|- ( p e. ( ( A X. B ) X. C ) -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / w ]. [. ( 2nd ` ( 1st ` q ) ) / t ]. [. ( 2nd ` q ) / u ]. th -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) |
| 96 |
18 95
|
biimtrid |
|- ( p e. ( ( A X. B ) X. C ) -> ( A. q e. Pred ( R , ( ( A X. B ) X. C ) , p ) [. ( 1st ` ( 1st ` q ) ) / x ]. [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ph -> [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) ) |
| 97 |
|
2fveq3 |
|- ( p = q -> ( 1st ` ( 1st ` p ) ) = ( 1st ` ( 1st ` q ) ) ) |
| 98 |
|
2fveq3 |
|- ( p = q -> ( 2nd ` ( 1st ` p ) ) = ( 2nd ` ( 1st ` q ) ) ) |
| 99 |
|
fveq2 |
|- ( p = q -> ( 2nd ` p ) = ( 2nd ` q ) ) |
| 100 |
99
|
sbceq1d |
|- ( p = q -> ( [. ( 2nd ` p ) / z ]. ph <-> [. ( 2nd ` q ) / z ]. ph ) ) |
| 101 |
98 100
|
sbceqbid |
|- ( p = q -> ( [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph <-> [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ph ) ) |
| 102 |
97 101
|
sbceqbid |
|- ( p = q -> ( [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph <-> [. ( 1st ` ( 1st ` q ) ) / x ]. [. ( 2nd ` ( 1st ` q ) ) / y ]. [. ( 2nd ` q ) / z ]. ph ) ) |
| 103 |
96 102
|
frpoins2g |
|- ( ( R Fr ( ( A X. B ) X. C ) /\ R Po ( ( A X. B ) X. C ) /\ R Se ( ( A X. B ) X. C ) ) -> A. p e. ( ( A X. B ) X. C ) [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph ) |
| 104 |
|
ralxp3es |
|- ( A. p e. ( ( A X. B ) X. C ) [. ( 1st ` ( 1st ` p ) ) / x ]. [. ( 2nd ` ( 1st ` p ) ) / y ]. [. ( 2nd ` p ) / z ]. ph <-> A. x e. A A. y e. B A. z e. C ph ) |
| 105 |
103 104
|
sylib |
|- ( ( R Fr ( ( A X. B ) X. C ) /\ R Po ( ( A X. B ) X. C ) /\ R Se ( ( A X. B ) X. C ) ) -> A. x e. A A. y e. B A. z e. C ph ) |
| 106 |
5 6 7
|
rspc3v |
|- ( ( X e. A /\ Y e. B /\ Z e. C ) -> ( A. x e. A A. y e. B A. z e. C ph -> ze ) ) |
| 107 |
105 106
|
mpan9 |
|- ( ( ( R Fr ( ( A X. B ) X. C ) /\ R Po ( ( A X. B ) X. C ) /\ R Se ( ( A X. B ) X. C ) ) /\ ( X e. A /\ Y e. B /\ Z e. C ) ) -> ze ) |