Metamath Proof Explorer


Theorem ralxp3f

Description: Restricted for all over a triple cross product. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses ral3xpf.1 𝑦 𝜑
ral3xpf.2 𝑧 𝜑
ral3xpf.3 𝑤 𝜑
ral3xpf.4 𝑥 𝜓
ral3xpf.5 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → ( 𝜑𝜓 ) )
Assertion ralxp3f ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ral3xpf.1 𝑦 𝜑
2 ral3xpf.2 𝑧 𝜑
3 ral3xpf.3 𝑤 𝜑
4 ral3xpf.4 𝑥 𝜓
5 ral3xpf.5 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → ( 𝜑𝜓 ) )
6 df-ral ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) )
7 1 r19.23 ( ∀ 𝑦𝐴 ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
8 3 r19.23 ( ∀ 𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
9 8 ralbii ( ∀ 𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑧𝐵 ( ∃ 𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
10 2 r19.23 ( ∀ 𝑧𝐵 ( ∃ 𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
11 9 10 bitri ( ∀ 𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
12 11 ralbii ( ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑦𝐴 ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
13 elxpxp ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ )
14 13 imbi1i ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) ↔ ( ∃ 𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
15 7 12 14 3bitr4ri ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
16 15 albii ( ∀ 𝑥 ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) ↔ ∀ 𝑥𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
17 ralcom4 ( ∀ 𝑦𝐴𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑥𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
18 ralcom4 ( ∀ 𝑧𝐵𝑥𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
19 ralcom4 ( ∀ 𝑤𝐶𝑥 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑥𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) )
20 opex ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ ∈ V
21 4 20 5 ceqsal ( ∀ 𝑥 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ 𝜓 )
22 21 ralbii ( ∀ 𝑤𝐶𝑥 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑤𝐶 𝜓 )
23 19 22 bitr3i ( ∀ 𝑥𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑤𝐶 𝜓 )
24 23 ralbii ( ∀ 𝑧𝐵𝑥𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑧𝐵𝑤𝐶 𝜓 )
25 18 24 bitr3i ( ∀ 𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑧𝐵𝑤𝐶 𝜓 )
26 25 ralbii ( ∀ 𝑦𝐴𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )
27 17 26 bitr3i ( ∀ 𝑥𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )
28 6 16 27 3bitri ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )