Metamath Proof Explorer


Theorem ralxp3

Description: Restricted for-all over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypothesis ralxp3.1 ( 𝑝 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝜑𝜓 ) )
Assertion ralxp3 ( ∀ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxp3.1 ( 𝑝 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ( 𝜑𝜓 ) )
2 nfv 𝑥 𝜑
3 nfv 𝑦 𝜑
4 nfv 𝑧 𝜑
5 nfv 𝑝 𝜓
6 2 3 4 5 1 ralxp3f ( ∀ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )