Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
⊢ 𝑈 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ( 1st ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑇 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
2 |
|
poxp3.1 |
⊢ ( 𝜑 → 𝑅 Po 𝐴 ) |
3 |
|
poxp3.2 |
⊢ ( 𝜑 → 𝑆 Po 𝐵 ) |
4 |
|
poxp3.3 |
⊢ ( 𝜑 → 𝑇 Po 𝐶 ) |
5 |
|
elxpxp |
⊢ ( 𝑎 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ) |
6 |
|
neirr |
⊢ ¬ 𝑑 ≠ 𝑑 |
7 |
|
neirr |
⊢ ¬ 𝑒 ≠ 𝑒 |
8 |
|
neirr |
⊢ ¬ 𝑓 ≠ 𝑓 |
9 |
6 7 8
|
3pm3.2ni |
⊢ ¬ ( 𝑑 ≠ 𝑑 ∨ 𝑒 ≠ 𝑒 ∨ 𝑓 ≠ 𝑓 ) |
10 |
9
|
intnan |
⊢ ¬ ( ( ( 𝑑 𝑅 𝑑 ∨ 𝑑 = 𝑑 ) ∧ ( 𝑒 𝑆 𝑒 ∨ 𝑒 = 𝑒 ) ∧ ( 𝑓 𝑇 𝑓 ∨ 𝑓 = 𝑓 ) ) ∧ ( 𝑑 ≠ 𝑑 ∨ 𝑒 ≠ 𝑒 ∨ 𝑓 ≠ 𝑓 ) ) |
11 |
|
simp3 |
⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑑 ∨ 𝑑 = 𝑑 ) ∧ ( 𝑒 𝑆 𝑒 ∨ 𝑒 = 𝑒 ) ∧ ( 𝑓 𝑇 𝑓 ∨ 𝑓 = 𝑓 ) ) ∧ ( 𝑑 ≠ 𝑑 ∨ 𝑒 ≠ 𝑒 ∨ 𝑓 ≠ 𝑓 ) ) ) → ( ( ( 𝑑 𝑅 𝑑 ∨ 𝑑 = 𝑑 ) ∧ ( 𝑒 𝑆 𝑒 ∨ 𝑒 = 𝑒 ) ∧ ( 𝑓 𝑇 𝑓 ∨ 𝑓 = 𝑓 ) ) ∧ ( 𝑑 ≠ 𝑑 ∨ 𝑒 ≠ 𝑒 ∨ 𝑓 ≠ 𝑓 ) ) ) |
12 |
10 11
|
mto |
⊢ ¬ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑑 ∨ 𝑑 = 𝑑 ) ∧ ( 𝑒 𝑆 𝑒 ∨ 𝑒 = 𝑒 ) ∧ ( 𝑓 𝑇 𝑓 ∨ 𝑓 = 𝑓 ) ) ∧ ( 𝑑 ≠ 𝑑 ∨ 𝑒 ≠ 𝑒 ∨ 𝑓 ≠ 𝑓 ) ) ) |
13 |
|
breq12 |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ) → ( 𝑎 𝑈 𝑎 ↔ 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ) ) |
14 |
13
|
anidms |
⊢ ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 → ( 𝑎 𝑈 𝑎 ↔ 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ) ) |
15 |
1
|
xpord3lem |
⊢ ( 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑑 ∨ 𝑑 = 𝑑 ) ∧ ( 𝑒 𝑆 𝑒 ∨ 𝑒 = 𝑒 ) ∧ ( 𝑓 𝑇 𝑓 ∨ 𝑓 = 𝑓 ) ) ∧ ( 𝑑 ≠ 𝑑 ∨ 𝑒 ≠ 𝑒 ∨ 𝑓 ≠ 𝑓 ) ) ) ) |
16 |
14 15
|
bitrdi |
⊢ ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 → ( 𝑎 𝑈 𝑎 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑑 ∨ 𝑑 = 𝑑 ) ∧ ( 𝑒 𝑆 𝑒 ∨ 𝑒 = 𝑒 ) ∧ ( 𝑓 𝑇 𝑓 ∨ 𝑓 = 𝑓 ) ) ∧ ( 𝑑 ≠ 𝑑 ∨ 𝑒 ≠ 𝑒 ∨ 𝑓 ≠ 𝑓 ) ) ) ) ) |
17 |
12 16
|
mtbiri |
⊢ ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 → ¬ 𝑎 𝑈 𝑎 ) |
18 |
17
|
rexlimivw |
⊢ ( ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 → ¬ 𝑎 𝑈 𝑎 ) |
19 |
18
|
a1i |
⊢ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) → ( ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 → ¬ 𝑎 𝑈 𝑎 ) ) |
20 |
19
|
rexlimivv |
⊢ ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 → ¬ 𝑎 𝑈 𝑎 ) |
21 |
5 20
|
sylbi |
⊢ ( 𝑎 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ¬ 𝑎 𝑈 𝑎 ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ¬ 𝑎 𝑈 𝑎 ) |
23 |
|
elxpxp |
⊢ ( 𝑏 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ) |
24 |
|
elxpxp |
⊢ ( 𝑐 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑗 ∈ 𝐴 ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) |
25 |
5 23 24
|
3anbi123i |
⊢ ( ( 𝑎 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑏 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑐 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ↔ ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑗 ∈ 𝐴 ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
26 |
|
3reeanv |
⊢ ( ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ( ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
27 |
26
|
rexbii |
⊢ ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ∃ 𝑘 ∈ 𝐵 ( ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
28 |
27
|
2rexbii |
⊢ ( ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ( ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
29 |
|
3reeanv |
⊢ ( ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ( ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ( ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
30 |
28 29
|
bitri |
⊢ ( ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ( ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
31 |
30
|
rexbii |
⊢ ( ∃ 𝑗 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ∃ 𝑗 ∈ 𝐴 ( ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
32 |
31
|
2rexbii |
⊢ ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑔 ∈ 𝐴 ∃ 𝑗 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ∃ 𝑑 ∈ 𝐴 ∃ 𝑔 ∈ 𝐴 ∃ 𝑗 ∈ 𝐴 ( ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
33 |
|
3reeanv |
⊢ ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑔 ∈ 𝐴 ∃ 𝑗 ∈ 𝐴 ( ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑗 ∈ 𝐴 ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
34 |
32 33
|
bitri |
⊢ ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑔 ∈ 𝐴 ∃ 𝑗 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ↔ ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 ∃ 𝑖 ∈ 𝐶 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ ∃ 𝑗 ∈ 𝐴 ∃ 𝑘 ∈ 𝐵 ∃ 𝑙 ∈ 𝐶 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
35 |
25 34
|
bitr4i |
⊢ ( ( 𝑎 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑏 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑐 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ↔ ∃ 𝑑 ∈ 𝐴 ∃ 𝑔 ∈ 𝐴 ∃ 𝑗 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
36 |
|
simprl1 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ) |
37 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ) |
38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑅 Po 𝐴 ) |
39 |
|
simpl11 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑑 ∈ 𝐴 ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑑 ∈ 𝐴 ) |
41 |
|
simpr11 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑔 ∈ 𝐴 ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑔 ∈ 𝐴 ) |
43 |
|
simpr21 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑗 ∈ 𝐴 ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑗 ∈ 𝐴 ) |
45 |
|
potr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴 ) ) → ( ( 𝑑 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) → 𝑑 𝑅 𝑗 ) ) |
46 |
38 40 42 44 45
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑑 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) → 𝑑 𝑅 𝑗 ) ) |
47 |
|
orc |
⊢ ( 𝑑 𝑅 𝑗 → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) |
48 |
46 47
|
syl6 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑑 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) ) |
49 |
48
|
expd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 𝑅 𝑔 → ( 𝑔 𝑅 𝑗 → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) ) ) |
50 |
|
breq1 |
⊢ ( 𝑑 = 𝑔 → ( 𝑑 𝑅 𝑗 ↔ 𝑔 𝑅 𝑗 ) ) |
51 |
50 47
|
syl6bir |
⊢ ( 𝑑 = 𝑔 → ( 𝑔 𝑅 𝑗 → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) ) |
52 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 = 𝑔 → ( 𝑔 𝑅 𝑗 → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) ) ) |
53 |
|
simp3l1 |
⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) → ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ) |
54 |
53
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ) |
55 |
49 52 54
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑔 𝑅 𝑗 → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) ) |
56 |
|
breq2 |
⊢ ( 𝑔 = 𝑗 → ( 𝑑 𝑅 𝑔 ↔ 𝑑 𝑅 𝑗 ) ) |
57 |
|
equequ2 |
⊢ ( 𝑔 = 𝑗 → ( 𝑑 = 𝑔 ↔ 𝑑 = 𝑗 ) ) |
58 |
56 57
|
orbi12d |
⊢ ( 𝑔 = 𝑗 → ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ↔ ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) ) |
59 |
54 58
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑔 = 𝑗 → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) ) |
60 |
|
simp3l1 |
⊢ ( ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) → ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ) |
61 |
60
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ) |
62 |
55 59 61
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ) |
63 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑆 Po 𝐵 ) |
64 |
|
simpl12 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑒 ∈ 𝐵 ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑒 ∈ 𝐵 ) |
66 |
|
simpr12 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → ℎ ∈ 𝐵 ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ℎ ∈ 𝐵 ) |
68 |
|
simpr22 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑘 ∈ 𝐵 ) |
69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑘 ∈ 𝐵 ) |
70 |
|
potr |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑒 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) ) → ( ( 𝑒 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) → 𝑒 𝑆 𝑘 ) ) |
71 |
63 65 67 69 70
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑒 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) → 𝑒 𝑆 𝑘 ) ) |
72 |
|
orc |
⊢ ( 𝑒 𝑆 𝑘 → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) |
73 |
71 72
|
syl6 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑒 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) ) |
74 |
73
|
expd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑒 𝑆 ℎ → ( ℎ 𝑆 𝑘 → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) ) ) |
75 |
|
breq1 |
⊢ ( 𝑒 = ℎ → ( 𝑒 𝑆 𝑘 ↔ ℎ 𝑆 𝑘 ) ) |
76 |
75 72
|
syl6bir |
⊢ ( 𝑒 = ℎ → ( ℎ 𝑆 𝑘 → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) ) |
77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑒 = ℎ → ( ℎ 𝑆 𝑘 → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) ) ) |
78 |
|
simp3l2 |
⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) → ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ) |
79 |
78
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ) |
80 |
74 77 79
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ℎ 𝑆 𝑘 → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) ) |
81 |
|
breq2 |
⊢ ( ℎ = 𝑘 → ( 𝑒 𝑆 ℎ ↔ 𝑒 𝑆 𝑘 ) ) |
82 |
|
equequ2 |
⊢ ( ℎ = 𝑘 → ( 𝑒 = ℎ ↔ 𝑒 = 𝑘 ) ) |
83 |
81 82
|
orbi12d |
⊢ ( ℎ = 𝑘 → ( ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ↔ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) ) |
84 |
79 83
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ℎ = 𝑘 → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) ) |
85 |
|
simp3l2 |
⊢ ( ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) → ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ) |
86 |
85
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ) |
87 |
80 84 86
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ) |
88 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑇 Po 𝐶 ) |
89 |
|
simpl13 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑓 ∈ 𝐶 ) |
90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑓 ∈ 𝐶 ) |
91 |
|
simpr13 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑖 ∈ 𝐶 ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑖 ∈ 𝐶 ) |
93 |
|
simpr23 |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → 𝑙 ∈ 𝐶 ) |
94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → 𝑙 ∈ 𝐶 ) |
95 |
|
potr |
⊢ ( ( 𝑇 Po 𝐶 ∧ ( 𝑓 ∈ 𝐶 ∧ 𝑖 ∈ 𝐶 ∧ 𝑙 ∈ 𝐶 ) ) → ( ( 𝑓 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) → 𝑓 𝑇 𝑙 ) ) |
96 |
88 90 92 94 95
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑓 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) → 𝑓 𝑇 𝑙 ) ) |
97 |
|
orc |
⊢ ( 𝑓 𝑇 𝑙 → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) |
98 |
96 97
|
syl6 |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑓 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) |
99 |
98
|
expd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑓 𝑇 𝑖 → ( 𝑖 𝑇 𝑙 → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) ) |
100 |
|
breq1 |
⊢ ( 𝑓 = 𝑖 → ( 𝑓 𝑇 𝑙 ↔ 𝑖 𝑇 𝑙 ) ) |
101 |
100 97
|
syl6bir |
⊢ ( 𝑓 = 𝑖 → ( 𝑖 𝑇 𝑙 → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) |
102 |
101
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑓 = 𝑖 → ( 𝑖 𝑇 𝑙 → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) ) |
103 |
|
simp3l3 |
⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) → ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) |
104 |
103
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) |
105 |
99 102 104
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑖 𝑇 𝑙 → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) |
106 |
|
breq2 |
⊢ ( 𝑖 = 𝑙 → ( 𝑓 𝑇 𝑖 ↔ 𝑓 𝑇 𝑙 ) ) |
107 |
|
equequ2 |
⊢ ( 𝑖 = 𝑙 → ( 𝑓 = 𝑖 ↔ 𝑓 = 𝑙 ) ) |
108 |
106 107
|
orbi12d |
⊢ ( 𝑖 = 𝑙 → ( ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ↔ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) |
109 |
104 108
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑖 = 𝑙 → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) |
110 |
|
simp3l3 |
⊢ ( ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) → ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) |
111 |
110
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) |
112 |
105 109 111
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) |
113 |
62 87 112
|
3jca |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ∧ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ∧ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ) |
114 |
|
simpr3r |
⊢ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) |
116 |
|
df-ne |
⊢ ( 𝑔 ≠ 𝑗 ↔ ¬ 𝑔 = 𝑗 ) |
117 |
|
df-ne |
⊢ ( ℎ ≠ 𝑘 ↔ ¬ ℎ = 𝑘 ) |
118 |
|
df-ne |
⊢ ( 𝑖 ≠ 𝑙 ↔ ¬ 𝑖 = 𝑙 ) |
119 |
116 117 118
|
3orbi123i |
⊢ ( ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ↔ ( ¬ 𝑔 = 𝑗 ∨ ¬ ℎ = 𝑘 ∨ ¬ 𝑖 = 𝑙 ) ) |
120 |
|
3ianor |
⊢ ( ¬ ( 𝑔 = 𝑗 ∧ ℎ = 𝑘 ∧ 𝑖 = 𝑙 ) ↔ ( ¬ 𝑔 = 𝑗 ∨ ¬ ℎ = 𝑘 ∨ ¬ 𝑖 = 𝑙 ) ) |
121 |
119 120
|
bitr4i |
⊢ ( ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ↔ ¬ ( 𝑔 = 𝑗 ∧ ℎ = 𝑘 ∧ 𝑖 = 𝑙 ) ) |
122 |
115 121
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ¬ ( 𝑔 = 𝑗 ∧ ℎ = 𝑘 ∧ 𝑖 = 𝑙 ) ) |
123 |
|
df-ne |
⊢ ( 𝑑 ≠ 𝑗 ↔ ¬ 𝑑 = 𝑗 ) |
124 |
|
df-ne |
⊢ ( 𝑒 ≠ 𝑘 ↔ ¬ 𝑒 = 𝑘 ) |
125 |
|
df-ne |
⊢ ( 𝑓 ≠ 𝑙 ↔ ¬ 𝑓 = 𝑙 ) |
126 |
123 124 125
|
3orbi123i |
⊢ ( ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ↔ ( ¬ 𝑑 = 𝑗 ∨ ¬ 𝑒 = 𝑘 ∨ ¬ 𝑓 = 𝑙 ) ) |
127 |
|
3ianor |
⊢ ( ¬ ( 𝑑 = 𝑗 ∧ 𝑒 = 𝑘 ∧ 𝑓 = 𝑙 ) ↔ ( ¬ 𝑑 = 𝑗 ∨ ¬ 𝑒 = 𝑘 ∨ ¬ 𝑓 = 𝑙 ) ) |
128 |
126 127
|
bitr4i |
⊢ ( ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ↔ ¬ ( 𝑑 = 𝑗 ∧ 𝑒 = 𝑘 ∧ 𝑓 = 𝑙 ) ) |
129 |
128
|
con2bii |
⊢ ( ( 𝑑 = 𝑗 ∧ 𝑒 = 𝑘 ∧ 𝑓 = 𝑙 ) ↔ ¬ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) |
130 |
|
breq1 |
⊢ ( 𝑑 = 𝑗 → ( 𝑑 𝑅 𝑔 ↔ 𝑗 𝑅 𝑔 ) ) |
131 |
|
equequ1 |
⊢ ( 𝑑 = 𝑗 → ( 𝑑 = 𝑔 ↔ 𝑗 = 𝑔 ) ) |
132 |
|
equcom |
⊢ ( 𝑗 = 𝑔 ↔ 𝑔 = 𝑗 ) |
133 |
131 132
|
bitrdi |
⊢ ( 𝑑 = 𝑗 → ( 𝑑 = 𝑔 ↔ 𝑔 = 𝑗 ) ) |
134 |
130 133
|
orbi12d |
⊢ ( 𝑑 = 𝑗 → ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ↔ ( 𝑗 𝑅 𝑔 ∨ 𝑔 = 𝑗 ) ) ) |
135 |
54 134
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 = 𝑗 → ( 𝑗 𝑅 𝑔 ∨ 𝑔 = 𝑗 ) ) ) |
136 |
135
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑑 = 𝑗 ) → ( 𝑗 𝑅 𝑔 ∨ 𝑔 = 𝑗 ) ) |
137 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑑 = 𝑗 ) → ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ) |
138 |
|
ordir |
⊢ ( ( ( 𝑗 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) ∨ 𝑔 = 𝑗 ) ↔ ( ( 𝑗 𝑅 𝑔 ∨ 𝑔 = 𝑗 ) ∧ ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ) ) |
139 |
136 137 138
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑑 = 𝑗 ) → ( ( 𝑗 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) ∨ 𝑔 = 𝑗 ) ) |
140 |
|
po2nr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ¬ ( 𝑗 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) ) |
141 |
38 44 42 140
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ¬ ( 𝑗 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) ) |
142 |
141
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑑 = 𝑗 ) → ¬ ( 𝑗 𝑅 𝑔 ∧ 𝑔 𝑅 𝑗 ) ) |
143 |
139 142
|
orcnd |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑑 = 𝑗 ) → 𝑔 = 𝑗 ) |
144 |
143
|
ex |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 = 𝑗 → 𝑔 = 𝑗 ) ) |
145 |
|
breq1 |
⊢ ( 𝑒 = 𝑘 → ( 𝑒 𝑆 ℎ ↔ 𝑘 𝑆 ℎ ) ) |
146 |
|
equequ1 |
⊢ ( 𝑒 = 𝑘 → ( 𝑒 = ℎ ↔ 𝑘 = ℎ ) ) |
147 |
|
equcom |
⊢ ( 𝑘 = ℎ ↔ ℎ = 𝑘 ) |
148 |
146 147
|
bitrdi |
⊢ ( 𝑒 = 𝑘 → ( 𝑒 = ℎ ↔ ℎ = 𝑘 ) ) |
149 |
145 148
|
orbi12d |
⊢ ( 𝑒 = 𝑘 → ( ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ↔ ( 𝑘 𝑆 ℎ ∨ ℎ = 𝑘 ) ) ) |
150 |
79 149
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑒 = 𝑘 → ( 𝑘 𝑆 ℎ ∨ ℎ = 𝑘 ) ) ) |
151 |
150
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑒 = 𝑘 ) → ( 𝑘 𝑆 ℎ ∨ ℎ = 𝑘 ) ) |
152 |
86
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑒 = 𝑘 ) → ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ) |
153 |
|
ordir |
⊢ ( ( ( 𝑘 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) ∨ ℎ = 𝑘 ) ↔ ( ( 𝑘 𝑆 ℎ ∨ ℎ = 𝑘 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ) ) |
154 |
151 152 153
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑒 = 𝑘 ) → ( ( 𝑘 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) ∨ ℎ = 𝑘 ) ) |
155 |
|
po2nr |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑘 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ¬ ( 𝑘 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) ) |
156 |
63 69 67 155
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ¬ ( 𝑘 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) ) |
157 |
156
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑒 = 𝑘 ) → ¬ ( 𝑘 𝑆 ℎ ∧ ℎ 𝑆 𝑘 ) ) |
158 |
154 157
|
orcnd |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑒 = 𝑘 ) → ℎ = 𝑘 ) |
159 |
158
|
ex |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑒 = 𝑘 → ℎ = 𝑘 ) ) |
160 |
|
breq1 |
⊢ ( 𝑓 = 𝑙 → ( 𝑓 𝑇 𝑖 ↔ 𝑙 𝑇 𝑖 ) ) |
161 |
|
equequ1 |
⊢ ( 𝑓 = 𝑙 → ( 𝑓 = 𝑖 ↔ 𝑙 = 𝑖 ) ) |
162 |
160 161
|
orbi12d |
⊢ ( 𝑓 = 𝑙 → ( ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ↔ ( 𝑙 𝑇 𝑖 ∨ 𝑙 = 𝑖 ) ) ) |
163 |
104 162
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑓 = 𝑙 → ( 𝑙 𝑇 𝑖 ∨ 𝑙 = 𝑖 ) ) ) |
164 |
163
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑓 = 𝑙 ) → ( 𝑙 𝑇 𝑖 ∨ 𝑙 = 𝑖 ) ) |
165 |
|
equcom |
⊢ ( 𝑙 = 𝑖 ↔ 𝑖 = 𝑙 ) |
166 |
165
|
orbi2i |
⊢ ( ( 𝑙 𝑇 𝑖 ∨ 𝑙 = 𝑖 ) ↔ ( 𝑙 𝑇 𝑖 ∨ 𝑖 = 𝑙 ) ) |
167 |
164 166
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑓 = 𝑙 ) → ( 𝑙 𝑇 𝑖 ∨ 𝑖 = 𝑙 ) ) |
168 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑓 = 𝑙 ) → ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) |
169 |
|
ordir |
⊢ ( ( ( 𝑙 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) ∨ 𝑖 = 𝑙 ) ↔ ( ( 𝑙 𝑇 𝑖 ∨ 𝑖 = 𝑙 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ) |
170 |
167 168 169
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑓 = 𝑙 ) → ( ( 𝑙 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) ∨ 𝑖 = 𝑙 ) ) |
171 |
|
po2nr |
⊢ ( ( 𝑇 Po 𝐶 ∧ ( 𝑙 ∈ 𝐶 ∧ 𝑖 ∈ 𝐶 ) ) → ¬ ( 𝑙 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) ) |
172 |
88 94 92 171
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ¬ ( 𝑙 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) ) |
173 |
172
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑓 = 𝑙 ) → ¬ ( 𝑙 𝑇 𝑖 ∧ 𝑖 𝑇 𝑙 ) ) |
174 |
170 173
|
orcnd |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ∧ 𝑓 = 𝑙 ) → 𝑖 = 𝑙 ) |
175 |
174
|
ex |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑓 = 𝑙 → 𝑖 = 𝑙 ) ) |
176 |
144 159 175
|
3anim123d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑑 = 𝑗 ∧ 𝑒 = 𝑘 ∧ 𝑓 = 𝑙 ) → ( 𝑔 = 𝑗 ∧ ℎ = 𝑘 ∧ 𝑖 = 𝑙 ) ) ) |
177 |
129 176
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ¬ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) → ( 𝑔 = 𝑗 ∧ ℎ = 𝑘 ∧ 𝑖 = 𝑙 ) ) ) |
178 |
122 177
|
mt3d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) |
179 |
113 178
|
jca |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ∧ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ∧ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ∧ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) ) |
180 |
36 37 179
|
3jca |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ∧ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ∧ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ∧ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) ) ) |
181 |
180
|
ex |
⊢ ( 𝜑 → ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ∧ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ∧ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ∧ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) ) ) ) |
182 |
|
breq12 |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ) → ( 𝑎 𝑈 𝑏 ↔ 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ) ) |
183 |
182
|
3adant3 |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑎 𝑈 𝑏 ↔ 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ) ) |
184 |
1
|
xpord3lem |
⊢ ( 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ) |
185 |
183 184
|
bitrdi |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑎 𝑈 𝑏 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ) ) |
186 |
|
breq12 |
⊢ ( ( 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑏 𝑈 𝑐 ↔ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 𝑈 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
187 |
186
|
3adant1 |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑏 𝑈 𝑐 ↔ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 𝑈 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
188 |
1
|
xpord3lem |
⊢ ( 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 𝑈 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ↔ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) |
189 |
187 188
|
bitrdi |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑏 𝑈 𝑐 ↔ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) |
190 |
185 189
|
anbi12d |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) ↔ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) ) ) |
191 |
|
breq12 |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑎 𝑈 𝑐 ↔ 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
192 |
191
|
3adant2 |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑎 𝑈 𝑐 ↔ 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) ) |
193 |
1
|
xpord3lem |
⊢ ( 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 𝑈 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ∧ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ∧ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ∧ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) ) ) |
194 |
192 193
|
bitrdi |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( 𝑎 𝑈 𝑐 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ∧ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ∧ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ∧ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) ) ) ) |
195 |
190 194
|
imbi12d |
⊢ ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔 ∨ 𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 ℎ ∨ 𝑒 = ℎ ) ∧ ( 𝑓 𝑇 𝑖 ∨ 𝑓 = 𝑖 ) ) ∧ ( 𝑑 ≠ 𝑔 ∨ 𝑒 ≠ ℎ ∨ 𝑓 ≠ 𝑖 ) ) ) ∧ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑗 ∨ 𝑔 = 𝑗 ) ∧ ( ℎ 𝑆 𝑘 ∨ ℎ = 𝑘 ) ∧ ( 𝑖 𝑇 𝑙 ∨ 𝑖 = 𝑙 ) ) ∧ ( 𝑔 ≠ 𝑗 ∨ ℎ ≠ 𝑘 ∨ 𝑖 ≠ 𝑙 ) ) ) ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ∧ 𝑙 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑗 ∨ 𝑑 = 𝑗 ) ∧ ( 𝑒 𝑆 𝑘 ∨ 𝑒 = 𝑘 ) ∧ ( 𝑓 𝑇 𝑙 ∨ 𝑓 = 𝑙 ) ) ∧ ( 𝑑 ≠ 𝑗 ∨ 𝑒 ≠ 𝑘 ∨ 𝑓 ≠ 𝑙 ) ) ) ) ) ) |
196 |
181 195
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
197 |
196
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
198 |
197
|
a1d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐶 ∧ 𝑖 ∈ 𝐶 ) → ( ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) ) |
199 |
198
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
200 |
199
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
201 |
200
|
a1d |
⊢ ( 𝜑 → ( ( 𝑒 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) ) |
202 |
201
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
203 |
202
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
204 |
203
|
a1d |
⊢ ( 𝜑 → ( ( 𝑑 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( ∃ 𝑗 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) ) |
205 |
204
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑔 ∈ 𝐴 ∃ 𝑗 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ∃ 𝑘 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 ∃ 𝑖 ∈ 𝐶 ∃ 𝑙 ∈ 𝐶 ( 𝑎 = 〈 〈 𝑑 , 𝑒 〉 , 𝑓 〉 ∧ 𝑏 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∧ 𝑐 = 〈 〈 𝑗 , 𝑘 〉 , 𝑙 〉 ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
206 |
35 205
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑏 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑐 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) ) |
207 |
206
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑏 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑐 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ) → ( ( 𝑎 𝑈 𝑏 ∧ 𝑏 𝑈 𝑐 ) → 𝑎 𝑈 𝑐 ) ) |
208 |
22 207
|
ispod |
⊢ ( 𝜑 → 𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |