Metamath Proof Explorer


Theorem poxp3

Description: Triple cross product partial ordering. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
poxp3.1 φ R Po A
poxp3.2 φ S Po B
poxp3.3 φ T Po C
Assertion poxp3 φ U Po A × B × C

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 poxp3.1 φ R Po A
3 poxp3.2 φ S Po B
4 poxp3.3 φ T Po C
5 elxpxp a A × B × C d A e B f C a = d e f
6 neirr ¬ d d
7 neirr ¬ e e
8 neirr ¬ f f
9 6 7 8 3pm3.2ni ¬ d d e e f f
10 9 intnan ¬ d R d d = d e S e e = e f T f f = f d d e e f f
11 simp3 d A e B f C d A e B f C d R d d = d e S e e = e f T f f = f d d e e f f d R d d = d e S e e = e f T f f = f d d e e f f
12 10 11 mto ¬ d A e B f C d A e B f C d R d d = d e S e e = e f T f f = f d d e e f f
13 breq12 a = d e f a = d e f a U a d e f U d e f
14 13 anidms a = d e f a U a d e f U d e f
15 1 xpord3lem d e f U d e f d A e B f C d A e B f C d R d d = d e S e e = e f T f f = f d d e e f f
16 14 15 bitrdi a = d e f a U a d A e B f C d A e B f C d R d d = d e S e e = e f T f f = f d d e e f f
17 12 16 mtbiri a = d e f ¬ a U a
18 17 rexlimivw f C a = d e f ¬ a U a
19 18 a1i d A e B f C a = d e f ¬ a U a
20 19 rexlimivv d A e B f C a = d e f ¬ a U a
21 5 20 sylbi a A × B × C ¬ a U a
22 21 adantl φ a A × B × C ¬ a U a
23 elxpxp b A × B × C g A h B i C b = g h i
24 elxpxp c A × B × C j A k B l C c = j k l
25 5 23 24 3anbi123i a A × B × C b A × B × C c A × B × C d A e B f C a = d e f g A h B i C b = g h i j A k B l C c = j k l
26 3reeanv f C i C l C a = d e f b = g h i c = j k l f C a = d e f i C b = g h i l C c = j k l
27 26 rexbii k B f C i C l C a = d e f b = g h i c = j k l k B f C a = d e f i C b = g h i l C c = j k l
28 27 2rexbii e B h B k B f C i C l C a = d e f b = g h i c = j k l e B h B k B f C a = d e f i C b = g h i l C c = j k l
29 3reeanv e B h B k B f C a = d e f i C b = g h i l C c = j k l e B f C a = d e f h B i C b = g h i k B l C c = j k l
30 28 29 bitri e B h B k B f C i C l C a = d e f b = g h i c = j k l e B f C a = d e f h B i C b = g h i k B l C c = j k l
31 30 rexbii j A e B h B k B f C i C l C a = d e f b = g h i c = j k l j A e B f C a = d e f h B i C b = g h i k B l C c = j k l
32 31 2rexbii d A g A j A e B h B k B f C i C l C a = d e f b = g h i c = j k l d A g A j A e B f C a = d e f h B i C b = g h i k B l C c = j k l
33 3reeanv d A g A j A e B f C a = d e f h B i C b = g h i k B l C c = j k l d A e B f C a = d e f g A h B i C b = g h i j A k B l C c = j k l
34 32 33 bitri d A g A j A e B h B k B f C i C l C a = d e f b = g h i c = j k l d A e B f C a = d e f g A h B i C b = g h i j A k B l C c = j k l
35 25 34 bitr4i a A × B × C b A × B × C c A × B × C d A g A j A e B h B k B f C i C l C a = d e f b = g h i c = j k l
36 simprl1 φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d A e B f C
37 simprr2 φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l j A k B l C
38 2 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l R Po A
39 simpl11 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d A
40 39 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d A
41 simpr11 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g A
42 41 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g A
43 simpr21 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l j A
44 43 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l j A
45 potr R Po A d A g A j A d R g g R j d R j
46 38 40 42 44 45 syl13anc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d R g g R j d R j
47 orc d R j d R j d = j
48 46 47 syl6 φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d R g g R j d R j d = j
49 48 expd φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d R g g R j d R j d = j
50 breq1 d = g d R j g R j
51 50 47 syl6bir d = g g R j d R j d = j
52 51 a1i φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = g g R j d R j d = j
53 simp3l1 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i d R g d = g
54 53 ad2antrl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d R g d = g
55 49 52 54 mpjaod φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g R j d R j d = j
56 breq2 g = j d R g d R j
57 equequ2 g = j d = g d = j
58 56 57 orbi12d g = j d R g d = g d R j d = j
59 54 58 syl5ibcom φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g = j d R j d = j
60 simp3l1 g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g R j g = j
61 60 ad2antll φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g R j g = j
62 55 59 61 mpjaod φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d R j d = j
63 3 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l S Po B
64 simpl12 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e B
65 64 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e B
66 simpr12 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l h B
67 66 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l h B
68 simpr22 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l k B
69 68 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l k B
70 potr S Po B e B h B k B e S h h S k e S k
71 63 65 67 69 70 syl13anc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e S h h S k e S k
72 orc e S k e S k e = k
73 71 72 syl6 φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e S h h S k e S k e = k
74 73 expd φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e S h h S k e S k e = k
75 breq1 e = h e S k h S k
76 75 72 syl6bir e = h h S k e S k e = k
77 76 a1i φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = h h S k e S k e = k
78 simp3l2 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i e S h e = h
79 78 ad2antrl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e S h e = h
80 74 77 79 mpjaod φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l h S k e S k e = k
81 breq2 h = k e S h e S k
82 equequ2 h = k e = h e = k
83 81 82 orbi12d h = k e S h e = h e S k e = k
84 79 83 syl5ibcom φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l h = k e S k e = k
85 simp3l2 g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l h S k h = k
86 85 ad2antll φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l h S k h = k
87 80 84 86 mpjaod φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e S k e = k
88 4 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l T Po C
89 simpl13 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f C
90 89 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f C
91 simpr13 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l i C
92 91 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l i C
93 simpr23 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l l C
94 93 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l l C
95 potr T Po C f C i C l C f T i i T l f T l
96 88 90 92 94 95 syl13anc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f T i i T l f T l
97 orc f T l f T l f = l
98 96 97 syl6 φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f T i i T l f T l f = l
99 98 expd φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f T i i T l f T l f = l
100 breq1 f = i f T l i T l
101 100 97 syl6bir f = i i T l f T l f = l
102 101 a1i φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = i i T l f T l f = l
103 simp3l3 d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i f T i f = i
104 103 ad2antrl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f T i f = i
105 99 102 104 mpjaod φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l i T l f T l f = l
106 breq2 i = l f T i f T l
107 equequ2 i = l f = i f = l
108 106 107 orbi12d i = l f T i f = i f T l f = l
109 104 108 syl5ibcom φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l i = l f T l f = l
110 simp3l3 g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l i T l i = l
111 110 ad2antll φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l i T l i = l
112 105 109 111 mpjaod φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f T l f = l
113 62 87 112 3jca φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d R j d = j e S k e = k f T l f = l
114 simpr3r d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g j h k i l
115 114 adantl φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l g j h k i l
116 df-ne g j ¬ g = j
117 df-ne h k ¬ h = k
118 df-ne i l ¬ i = l
119 116 117 118 3orbi123i g j h k i l ¬ g = j ¬ h = k ¬ i = l
120 3ianor ¬ g = j h = k i = l ¬ g = j ¬ h = k ¬ i = l
121 119 120 bitr4i g j h k i l ¬ g = j h = k i = l
122 115 121 sylib φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l ¬ g = j h = k i = l
123 df-ne d j ¬ d = j
124 df-ne e k ¬ e = k
125 df-ne f l ¬ f = l
126 123 124 125 3orbi123i d j e k f l ¬ d = j ¬ e = k ¬ f = l
127 3ianor ¬ d = j e = k f = l ¬ d = j ¬ e = k ¬ f = l
128 126 127 bitr4i d j e k f l ¬ d = j e = k f = l
129 128 con2bii d = j e = k f = l ¬ d j e k f l
130 breq1 d = j d R g j R g
131 equequ1 d = j d = g j = g
132 equcom j = g g = j
133 131 132 bitrdi d = j d = g g = j
134 130 133 orbi12d d = j d R g d = g j R g g = j
135 54 134 syl5ibcom φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j j R g g = j
136 135 imp φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j j R g g = j
137 61 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j g R j g = j
138 ordir j R g g R j g = j j R g g = j g R j g = j
139 136 137 138 sylanbrc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j j R g g R j g = j
140 po2nr R Po A j A g A ¬ j R g g R j
141 38 44 42 140 syl12anc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l ¬ j R g g R j
142 141 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j ¬ j R g g R j
143 139 142 orcnd φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j g = j
144 143 ex φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j g = j
145 breq1 e = k e S h k S h
146 equequ1 e = k e = h k = h
147 equcom k = h h = k
148 146 147 bitrdi e = k e = h h = k
149 145 148 orbi12d e = k e S h e = h k S h h = k
150 79 149 syl5ibcom φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = k k S h h = k
151 150 imp φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = k k S h h = k
152 86 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = k h S k h = k
153 ordir k S h h S k h = k k S h h = k h S k h = k
154 151 152 153 sylanbrc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = k k S h h S k h = k
155 po2nr S Po B k B h B ¬ k S h h S k
156 63 69 67 155 syl12anc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l ¬ k S h h S k
157 156 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = k ¬ k S h h S k
158 154 157 orcnd φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = k h = k
159 158 ex φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l e = k h = k
160 breq1 f = l f T i l T i
161 equequ1 f = l f = i l = i
162 160 161 orbi12d f = l f T i f = i l T i l = i
163 104 162 syl5ibcom φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l l T i l = i
164 163 imp φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l l T i l = i
165 equcom l = i i = l
166 165 orbi2i l T i l = i l T i i = l
167 164 166 sylib φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l l T i i = l
168 111 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l i T l i = l
169 ordir l T i i T l i = l l T i i = l i T l i = l
170 167 168 169 sylanbrc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l l T i i T l i = l
171 po2nr T Po C l C i C ¬ l T i i T l
172 88 94 92 171 syl12anc φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l ¬ l T i i T l
173 172 adantr φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l ¬ l T i i T l
174 170 173 orcnd φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l i = l
175 174 ex φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l f = l i = l
176 144 159 175 3anim123d φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d = j e = k f = l g = j h = k i = l
177 129 176 syl5bir φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l ¬ d j e k f l g = j h = k i = l
178 122 177 mt3d φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d j e k f l
179 113 178 jca φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d R j d = j e S k e = k f T l f = l d j e k f l
180 36 37 179 3jca φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d A e B f C j A k B l C d R j d = j e S k e = k f T l f = l d j e k f l
181 180 ex φ d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d A e B f C j A k B l C d R j d = j e S k e = k f T l f = l d j e k f l
182 breq12 a = d e f b = g h i a U b d e f U g h i
183 182 3adant3 a = d e f b = g h i c = j k l a U b d e f U g h i
184 1 xpord3lem d e f U g h i d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i
185 183 184 bitrdi a = d e f b = g h i c = j k l a U b d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i
186 breq12 b = g h i c = j k l b U c g h i U j k l
187 186 3adant1 a = d e f b = g h i c = j k l b U c g h i U j k l
188 1 xpord3lem g h i U j k l g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l
189 187 188 bitrdi a = d e f b = g h i c = j k l b U c g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l
190 185 189 anbi12d a = d e f b = g h i c = j k l a U b b U c d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l
191 breq12 a = d e f c = j k l a U c d e f U j k l
192 191 3adant2 a = d e f b = g h i c = j k l a U c d e f U j k l
193 1 xpord3lem d e f U j k l d A e B f C j A k B l C d R j d = j e S k e = k f T l f = l d j e k f l
194 192 193 bitrdi a = d e f b = g h i c = j k l a U c d A e B f C j A k B l C d R j d = j e S k e = k f T l f = l d j e k f l
195 190 194 imbi12d a = d e f b = g h i c = j k l a U b b U c a U c d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C j A k B l C g R j g = j h S k h = k i T l i = l g j h k i l d A e B f C j A k B l C d R j d = j e S k e = k f T l f = l d j e k f l
196 181 195 syl5ibrcom φ a = d e f b = g h i c = j k l a U b b U c a U c
197 196 rexlimdvw φ l C a = d e f b = g h i c = j k l a U b b U c a U c
198 197 a1d φ f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
199 198 rexlimdvv φ f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
200 199 rexlimdvw φ k B f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
201 200 a1d φ e B h B k B f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
202 201 rexlimdvv φ e B h B k B f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
203 202 rexlimdvw φ j A e B h B k B f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
204 203 a1d φ d A g A j A e B h B k B f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
205 204 rexlimdvv φ d A g A j A e B h B k B f C i C l C a = d e f b = g h i c = j k l a U b b U c a U c
206 35 205 syl5bi φ a A × B × C b A × B × C c A × B × C a U b b U c a U c
207 206 imp φ a A × B × C b A × B × C c A × B × C a U b b U c a U c
208 22 207 ispod φ U Po A × B × C