Metamath Proof Explorer


Theorem frxp3

Description: Give foundedness over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
frxp3.1 φ R Fr A
frxp3.2 φ S Fr B
frxp3.3 φ T Fr C
Assertion frxp3 φ U Fr A × B × C

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 frxp3.1 φ R Fr A
3 frxp3.2 φ S Fr B
4 frxp3.3 φ T Fr C
5 dmss s A × B × C dom s dom A × B × C
6 5 ad2antrl φ s A × B × C s dom s dom A × B × C
7 dmxpss dom A × B × C A × B
8 6 7 sstrdi φ s A × B × C s dom s A × B
9 dmss dom s A × B dom dom s dom A × B
10 8 9 syl φ s A × B × C s dom dom s dom A × B
11 dmxpss dom A × B A
12 10 11 sstrdi φ s A × B × C s dom dom s A
13 simprr φ s A × B × C s s
14 simprl φ s A × B × C s s A × B × C
15 relxp Rel A × B × C
16 relss s A × B × C Rel A × B × C Rel s
17 14 15 16 mpisyl φ s A × B × C s Rel s
18 reldm0 Rel s s = dom s =
19 17 18 syl φ s A × B × C s s = dom s =
20 19 necon3bid φ s A × B × C s s dom s
21 13 20 mpbid φ s A × B × C s dom s
22 relxp Rel A × B
23 relss dom s A × B Rel A × B Rel dom s
24 8 22 23 mpisyl φ s A × B × C s Rel dom s
25 reldm0 Rel dom s dom s = dom dom s =
26 24 25 syl φ s A × B × C s dom s = dom dom s =
27 26 necon3bid φ s A × B × C s dom s dom dom s
28 21 27 mpbid φ s A × B × C s dom dom s
29 df-fr R Fr A g g A g a g d g ¬ d R a
30 2 29 sylib φ g g A g a g d g ¬ d R a
31 30 adantr φ s A × B × C s g g A g a g d g ¬ d R a
32 vex s V
33 32 dmex dom s V
34 33 dmex dom dom s V
35 sseq1 g = dom dom s g A dom dom s A
36 neeq1 g = dom dom s g dom dom s
37 35 36 anbi12d g = dom dom s g A g dom dom s A dom dom s
38 raleq g = dom dom s d g ¬ d R a d dom dom s ¬ d R a
39 38 rexeqbi1dv g = dom dom s a g d g ¬ d R a a dom dom s d dom dom s ¬ d R a
40 37 39 imbi12d g = dom dom s g A g a g d g ¬ d R a dom dom s A dom dom s a dom dom s d dom dom s ¬ d R a
41 34 40 spcv g g A g a g d g ¬ d R a dom dom s A dom dom s a dom dom s d dom dom s ¬ d R a
42 31 41 syl φ s A × B × C s dom dom s A dom dom s a dom dom s d dom dom s ¬ d R a
43 12 28 42 mp2and φ s A × B × C s a dom dom s d dom dom s ¬ d R a
44 imassrn dom s a ran dom s
45 rnss dom s A × B ran dom s ran A × B
46 8 45 syl φ s A × B × C s ran dom s ran A × B
47 rnxpss ran A × B B
48 46 47 sstrdi φ s A × B × C s ran dom s B
49 48 adantr φ s A × B × C s a dom dom s d dom dom s ¬ d R a ran dom s B
50 44 49 sstrid φ s A × B × C s a dom dom s d dom dom s ¬ d R a dom s a B
51 simprl φ s A × B × C s a dom dom s d dom dom s ¬ d R a a dom dom s
52 imadisj dom s a = dom dom s a =
53 disjsn dom dom s a = ¬ a dom dom s
54 52 53 bitri dom s a = ¬ a dom dom s
55 54 necon2abii a dom dom s dom s a
56 51 55 sylib φ s A × B × C s a dom dom s d dom dom s ¬ d R a dom s a
57 df-fr S Fr B g g B g b g e g ¬ e S b
58 3 57 sylib φ g g B g b g e g ¬ e S b
59 33 imaex dom s a V
60 sseq1 g = dom s a g B dom s a B
61 neeq1 g = dom s a g dom s a
62 60 61 anbi12d g = dom s a g B g dom s a B dom s a
63 raleq g = dom s a e g ¬ e S b e dom s a ¬ e S b
64 63 rexeqbi1dv g = dom s a b g e g ¬ e S b b dom s a e dom s a ¬ e S b
65 62 64 imbi12d g = dom s a g B g b g e g ¬ e S b dom s a B dom s a b dom s a e dom s a ¬ e S b
66 59 65 spcv g g B g b g e g ¬ e S b dom s a B dom s a b dom s a e dom s a ¬ e S b
67 58 66 syl φ dom s a B dom s a b dom s a e dom s a ¬ e S b
68 67 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a dom s a B dom s a b dom s a e dom s a ¬ e S b
69 50 56 68 mp2and φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b
70 imassrn s a b ran s
71 rnss s A × B × C ran s ran A × B × C
72 71 ad2antrl φ s A × B × C s ran s ran A × B × C
73 rnxpss ran A × B × C C
74 72 73 sstrdi φ s A × B × C s ran s C
75 70 74 sstrid φ s A × B × C s s a b C
76 75 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b s a b C
77 simprl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b b dom s a
78 vex a V
79 vex b V
80 78 79 elimasn b dom s a a b dom s
81 77 80 sylib φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b a b dom s
82 imadisj s a b = dom s a b =
83 disjsn dom s a b = ¬ a b dom s
84 82 83 bitri s a b = ¬ a b dom s
85 84 necon2abii a b dom s s a b
86 81 85 sylib φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b s a b
87 df-fr T Fr C g g C g c g f g ¬ f T c
88 4 87 sylib φ g g C g c g f g ¬ f T c
89 32 imaex s a b V
90 sseq1 g = s a b g C s a b C
91 neeq1 g = s a b g s a b
92 90 91 anbi12d g = s a b g C g s a b C s a b
93 raleq g = s a b f g ¬ f T c f s a b ¬ f T c
94 93 rexeqbi1dv g = s a b c g f g ¬ f T c c s a b f s a b ¬ f T c
95 92 94 imbi12d g = s a b g C g c g f g ¬ f T c s a b C s a b c s a b f s a b ¬ f T c
96 89 95 spcv g g C g c g f g ¬ f T c s a b C s a b c s a b f s a b ¬ f T c
97 88 96 syl φ s a b C s a b c s a b f s a b ¬ f T c
98 97 ad3antrrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b s a b C s a b c s a b f s a b ¬ f T c
99 76 86 98 mp2and φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c
100 simprl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c c s a b
101 opex a b V
102 vex c V
103 101 102 elimasn c s a b a b c s
104 100 103 sylib φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b c s
105 simplrl φ s A × B × C s a dom dom s d dom dom s ¬ d R a s A × B × C
106 105 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c s A × B × C
107 elxpxpss s A × B × C q s g h i q = g h i
108 106 107 sylan φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s g h i q = g h i
109 df-ne i c ¬ i = c
110 109 con2bii i = c ¬ i c
111 110 biimpi i = c ¬ i c
112 111 adantl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i = c ¬ i c
113 112 intnand φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i = c ¬ g R a g = a h S b h = b i T c i = c i c
114 breq1 f = i f T c i T c
115 114 notbid f = i ¬ f T c ¬ i T c
116 simplrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s f s a b ¬ f T c
117 116 adantr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c f s a b ¬ f T c
118 simplr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c a b i s
119 vex i V
120 101 119 elimasn i s a b a b i s
121 118 120 sylibr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c i s a b
122 115 117 121 rspcdva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ i T c
123 simpr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c i c
124 123 neneqd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ i = c
125 ioran ¬ i T c i = c ¬ i T c ¬ i = c
126 122 124 125 sylanbrc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ i T c i = c
127 126 intn3an3d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ g R a g = a h S b h = b i T c i = c
128 127 intnanrd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ g R a g = a h S b h = b i T c i = c i c
129 113 128 pm2.61dane φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s ¬ g R a g = a h S b h = b i T c i = c i c
130 opeq2 h = b a h = a b
131 130 opeq1d h = b a h i = a b i
132 131 eleq1d h = b a h i s a b i s
133 132 anbi2d h = b φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s
134 neeq1 h = b h b b b
135 134 orbi1d h = b h b i c b b i c
136 neirr ¬ b b
137 orel1 ¬ b b b b i c i c
138 136 137 ax-mp b b i c i c
139 olc i c b b i c
140 138 139 impbii b b i c i c
141 135 140 bitrdi h = b h b i c i c
142 141 anbi2d h = b g R a g = a h S b h = b i T c i = c h b i c g R a g = a h S b h = b i T c i = c i c
143 142 notbid h = b ¬ g R a g = a h S b h = b i T c i = c h b i c ¬ g R a g = a h S b h = b i T c i = c i c
144 133 143 imbi12d h = b φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s ¬ g R a g = a h S b h = b i T c i = c i c
145 129 144 mpbiri h = b φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c
146 145 impcom φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h = b ¬ g R a g = a h S b h = b i T c i = c h b i c
147 breq1 e = h e S b h S b
148 147 notbid e = h ¬ e S b ¬ h S b
149 simplrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c e dom s a ¬ e S b
150 149 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b e dom s a ¬ e S b
151 opex a h V
152 151 119 opeldm a h i s a h dom s
153 152 adantl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s a h dom s
154 153 adantr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b a h dom s
155 vex h V
156 78 155 elimasn h dom s a a h dom s
157 154 156 sylibr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b h dom s a
158 148 150 157 rspcdva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ h S b
159 simpr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b h b
160 159 neneqd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ h = b
161 ioran ¬ h S b h = b ¬ h S b ¬ h = b
162 158 160 161 sylanbrc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ h S b h = b
163 162 intn3an2d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ g R a g = a h S b h = b i T c i = c
164 163 intnanrd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ g R a g = a h S b h = b i T c i = c h b i c
165 146 164 pm2.61dane φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c
166 opeq1 g = a g h = a h
167 166 opeq1d g = a g h i = a h i
168 167 eleq1d g = a g h i s a h i s
169 168 anbi2d g = a φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s
170 3orass g a h b i c g a h b i c
171 neeq1 g = a g a a a
172 171 orbi1d g = a g a h b i c a a h b i c
173 170 172 syl5bb g = a g a h b i c a a h b i c
174 neirr ¬ a a
175 orel1 ¬ a a a a h b i c h b i c
176 174 175 ax-mp a a h b i c h b i c
177 olc h b i c a a h b i c
178 176 177 impbii a a h b i c h b i c
179 173 178 bitrdi g = a g a h b i c h b i c
180 179 anbi2d g = a g R a g = a h S b h = b i T c i = c g a h b i c g R a g = a h S b h = b i T c i = c h b i c
181 180 notbid g = a ¬ g R a g = a h S b h = b i T c i = c g a h b i c ¬ g R a g = a h S b h = b i T c i = c h b i c
182 169 181 imbi12d g = a φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g R a g = a h S b h = b i T c i = c g a h b i c φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c
183 165 182 mpbiri g = a φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g R a g = a h S b h = b i T c i = c g a h b i c
184 183 impcom φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g = a ¬ g R a g = a h S b h = b i T c i = c g a h b i c
185 breq1 d = g d R a g R a
186 185 notbid d = g ¬ d R a ¬ g R a
187 simplrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b d dom dom s ¬ d R a
188 187 ad3antrrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a d dom dom s ¬ d R a
189 opex g h V
190 189 119 opeldm g h i s g h dom s
191 190 adantl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g h dom s
192 vex g V
193 192 155 opeldm g h dom s g dom dom s
194 191 193 syl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g dom dom s
195 194 adantr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a g dom dom s
196 186 188 195 rspcdva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a
197 simpr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a g a
198 197 neneqd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g = a
199 ioran ¬ g R a g = a ¬ g R a ¬ g = a
200 196 198 199 sylanbrc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a g = a
201 200 intn3an1d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a g = a h S b h = b i T c i = c
202 201 intnanrd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a g = a h S b h = b i T c i = c g a h b i c
203 184 202 pm2.61dane φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g R a g = a h S b h = b i T c i = c g a h b i c
204 203 intn3an3d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
205 eleq1 q = g h i q s g h i s
206 205 anbi2d q = g h i φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s
207 breq1 q = g h i q U a b c g h i U a b c
208 1 xpord3lem g h i U a b c g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
209 207 208 bitrdi q = g h i q U a b c g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
210 209 notbid q = g h i ¬ q U a b c ¬ g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
211 206 210 imbi12d q = g h i φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
212 204 211 mpbiri q = g h i φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c
213 212 com12 φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s q = g h i ¬ q U a b c
214 213 exlimdv φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s i q = g h i ¬ q U a b c
215 214 exlimdvv φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s g h i q = g h i ¬ q U a b c
216 108 215 mpd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c
217 216 ralrimiva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c
218 breq2 p = a b c q U p q U a b c
219 218 notbid p = a b c ¬ q U p ¬ q U a b c
220 219 ralbidv p = a b c q s ¬ q U p q s ¬ q U a b c
221 220 rspcev a b c s q s ¬ q U a b c p s q s ¬ q U p
222 104 217 221 syl2anc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c p s q s ¬ q U p
223 99 222 rexlimddv φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b p s q s ¬ q U p
224 69 223 rexlimddv φ s A × B × C s a dom dom s d dom dom s ¬ d R a p s q s ¬ q U p
225 43 224 rexlimddv φ s A × B × C s p s q s ¬ q U p
226 225 ex φ s A × B × C s p s q s ¬ q U p
227 226 alrimiv φ s s A × B × C s p s q s ¬ q U p
228 df-fr U Fr A × B × C s s A × B × C s p s q s ¬ q U p
229 227 228 sylibr φ U Fr A × B × C