Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
|- U = { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } |
2 |
|
frxp3.1 |
|- ( ph -> R Fr A ) |
3 |
|
frxp3.2 |
|- ( ph -> S Fr B ) |
4 |
|
frxp3.3 |
|- ( ph -> T Fr C ) |
5 |
|
dmss |
|- ( s C_ ( ( A X. B ) X. C ) -> dom s C_ dom ( ( A X. B ) X. C ) ) |
6 |
5
|
ad2antrl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom s C_ dom ( ( A X. B ) X. C ) ) |
7 |
|
dmxpss |
|- dom ( ( A X. B ) X. C ) C_ ( A X. B ) |
8 |
6 7
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom s C_ ( A X. B ) ) |
9 |
|
dmss |
|- ( dom s C_ ( A X. B ) -> dom dom s C_ dom ( A X. B ) ) |
10 |
8 9
|
syl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom dom s C_ dom ( A X. B ) ) |
11 |
|
dmxpss |
|- dom ( A X. B ) C_ A |
12 |
10 11
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom dom s C_ A ) |
13 |
|
simprr |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> s =/= (/) ) |
14 |
|
simprl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> s C_ ( ( A X. B ) X. C ) ) |
15 |
|
relxp |
|- Rel ( ( A X. B ) X. C ) |
16 |
|
relss |
|- ( s C_ ( ( A X. B ) X. C ) -> ( Rel ( ( A X. B ) X. C ) -> Rel s ) ) |
17 |
14 15 16
|
mpisyl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> Rel s ) |
18 |
|
reldm0 |
|- ( Rel s -> ( s = (/) <-> dom s = (/) ) ) |
19 |
17 18
|
syl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( s = (/) <-> dom s = (/) ) ) |
20 |
19
|
necon3bid |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( s =/= (/) <-> dom s =/= (/) ) ) |
21 |
13 20
|
mpbid |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom s =/= (/) ) |
22 |
|
relxp |
|- Rel ( A X. B ) |
23 |
|
relss |
|- ( dom s C_ ( A X. B ) -> ( Rel ( A X. B ) -> Rel dom s ) ) |
24 |
8 22 23
|
mpisyl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> Rel dom s ) |
25 |
|
reldm0 |
|- ( Rel dom s -> ( dom s = (/) <-> dom dom s = (/) ) ) |
26 |
24 25
|
syl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( dom s = (/) <-> dom dom s = (/) ) ) |
27 |
26
|
necon3bid |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( dom s =/= (/) <-> dom dom s =/= (/) ) ) |
28 |
21 27
|
mpbid |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom dom s =/= (/) ) |
29 |
|
df-fr |
|- ( R Fr A <-> A. g ( ( g C_ A /\ g =/= (/) ) -> E. a e. g A. d e. g -. d R a ) ) |
30 |
2 29
|
sylib |
|- ( ph -> A. g ( ( g C_ A /\ g =/= (/) ) -> E. a e. g A. d e. g -. d R a ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> A. g ( ( g C_ A /\ g =/= (/) ) -> E. a e. g A. d e. g -. d R a ) ) |
32 |
|
vex |
|- s e. _V |
33 |
32
|
dmex |
|- dom s e. _V |
34 |
33
|
dmex |
|- dom dom s e. _V |
35 |
|
sseq1 |
|- ( g = dom dom s -> ( g C_ A <-> dom dom s C_ A ) ) |
36 |
|
neeq1 |
|- ( g = dom dom s -> ( g =/= (/) <-> dom dom s =/= (/) ) ) |
37 |
35 36
|
anbi12d |
|- ( g = dom dom s -> ( ( g C_ A /\ g =/= (/) ) <-> ( dom dom s C_ A /\ dom dom s =/= (/) ) ) ) |
38 |
|
raleq |
|- ( g = dom dom s -> ( A. d e. g -. d R a <-> A. d e. dom dom s -. d R a ) ) |
39 |
38
|
rexeqbi1dv |
|- ( g = dom dom s -> ( E. a e. g A. d e. g -. d R a <-> E. a e. dom dom s A. d e. dom dom s -. d R a ) ) |
40 |
37 39
|
imbi12d |
|- ( g = dom dom s -> ( ( ( g C_ A /\ g =/= (/) ) -> E. a e. g A. d e. g -. d R a ) <-> ( ( dom dom s C_ A /\ dom dom s =/= (/) ) -> E. a e. dom dom s A. d e. dom dom s -. d R a ) ) ) |
41 |
34 40
|
spcv |
|- ( A. g ( ( g C_ A /\ g =/= (/) ) -> E. a e. g A. d e. g -. d R a ) -> ( ( dom dom s C_ A /\ dom dom s =/= (/) ) -> E. a e. dom dom s A. d e. dom dom s -. d R a ) ) |
42 |
31 41
|
syl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( ( dom dom s C_ A /\ dom dom s =/= (/) ) -> E. a e. dom dom s A. d e. dom dom s -. d R a ) ) |
43 |
12 28 42
|
mp2and |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> E. a e. dom dom s A. d e. dom dom s -. d R a ) |
44 |
|
imassrn |
|- ( dom s " { a } ) C_ ran dom s |
45 |
|
rnss |
|- ( dom s C_ ( A X. B ) -> ran dom s C_ ran ( A X. B ) ) |
46 |
8 45
|
syl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran dom s C_ ran ( A X. B ) ) |
47 |
|
rnxpss |
|- ran ( A X. B ) C_ B |
48 |
46 47
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran dom s C_ B ) |
49 |
48
|
adantr |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> ran dom s C_ B ) |
50 |
44 49
|
sstrid |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> ( dom s " { a } ) C_ B ) |
51 |
|
simprl |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> a e. dom dom s ) |
52 |
|
imadisj |
|- ( ( dom s " { a } ) = (/) <-> ( dom dom s i^i { a } ) = (/) ) |
53 |
|
disjsn |
|- ( ( dom dom s i^i { a } ) = (/) <-> -. a e. dom dom s ) |
54 |
52 53
|
bitri |
|- ( ( dom s " { a } ) = (/) <-> -. a e. dom dom s ) |
55 |
54
|
necon2abii |
|- ( a e. dom dom s <-> ( dom s " { a } ) =/= (/) ) |
56 |
51 55
|
sylib |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> ( dom s " { a } ) =/= (/) ) |
57 |
|
df-fr |
|- ( S Fr B <-> A. g ( ( g C_ B /\ g =/= (/) ) -> E. b e. g A. e e. g -. e S b ) ) |
58 |
3 57
|
sylib |
|- ( ph -> A. g ( ( g C_ B /\ g =/= (/) ) -> E. b e. g A. e e. g -. e S b ) ) |
59 |
33
|
imaex |
|- ( dom s " { a } ) e. _V |
60 |
|
sseq1 |
|- ( g = ( dom s " { a } ) -> ( g C_ B <-> ( dom s " { a } ) C_ B ) ) |
61 |
|
neeq1 |
|- ( g = ( dom s " { a } ) -> ( g =/= (/) <-> ( dom s " { a } ) =/= (/) ) ) |
62 |
60 61
|
anbi12d |
|- ( g = ( dom s " { a } ) -> ( ( g C_ B /\ g =/= (/) ) <-> ( ( dom s " { a } ) C_ B /\ ( dom s " { a } ) =/= (/) ) ) ) |
63 |
|
raleq |
|- ( g = ( dom s " { a } ) -> ( A. e e. g -. e S b <-> A. e e. ( dom s " { a } ) -. e S b ) ) |
64 |
63
|
rexeqbi1dv |
|- ( g = ( dom s " { a } ) -> ( E. b e. g A. e e. g -. e S b <-> E. b e. ( dom s " { a } ) A. e e. ( dom s " { a } ) -. e S b ) ) |
65 |
62 64
|
imbi12d |
|- ( g = ( dom s " { a } ) -> ( ( ( g C_ B /\ g =/= (/) ) -> E. b e. g A. e e. g -. e S b ) <-> ( ( ( dom s " { a } ) C_ B /\ ( dom s " { a } ) =/= (/) ) -> E. b e. ( dom s " { a } ) A. e e. ( dom s " { a } ) -. e S b ) ) ) |
66 |
59 65
|
spcv |
|- ( A. g ( ( g C_ B /\ g =/= (/) ) -> E. b e. g A. e e. g -. e S b ) -> ( ( ( dom s " { a } ) C_ B /\ ( dom s " { a } ) =/= (/) ) -> E. b e. ( dom s " { a } ) A. e e. ( dom s " { a } ) -. e S b ) ) |
67 |
58 66
|
syl |
|- ( ph -> ( ( ( dom s " { a } ) C_ B /\ ( dom s " { a } ) =/= (/) ) -> E. b e. ( dom s " { a } ) A. e e. ( dom s " { a } ) -. e S b ) ) |
68 |
67
|
ad2antrr |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> ( ( ( dom s " { a } ) C_ B /\ ( dom s " { a } ) =/= (/) ) -> E. b e. ( dom s " { a } ) A. e e. ( dom s " { a } ) -. e S b ) ) |
69 |
50 56 68
|
mp2and |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> E. b e. ( dom s " { a } ) A. e e. ( dom s " { a } ) -. e S b ) |
70 |
|
imassrn |
|- ( s " { <. a , b >. } ) C_ ran s |
71 |
|
rnss |
|- ( s C_ ( ( A X. B ) X. C ) -> ran s C_ ran ( ( A X. B ) X. C ) ) |
72 |
71
|
ad2antrl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran s C_ ran ( ( A X. B ) X. C ) ) |
73 |
|
rnxpss |
|- ran ( ( A X. B ) X. C ) C_ C |
74 |
72 73
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran s C_ C ) |
75 |
70 74
|
sstrid |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( s " { <. a , b >. } ) C_ C ) |
76 |
75
|
ad2antrr |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> ( s " { <. a , b >. } ) C_ C ) |
77 |
|
simprl |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> b e. ( dom s " { a } ) ) |
78 |
|
vex |
|- a e. _V |
79 |
|
vex |
|- b e. _V |
80 |
78 79
|
elimasn |
|- ( b e. ( dom s " { a } ) <-> <. a , b >. e. dom s ) |
81 |
77 80
|
sylib |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> <. a , b >. e. dom s ) |
82 |
|
imadisj |
|- ( ( s " { <. a , b >. } ) = (/) <-> ( dom s i^i { <. a , b >. } ) = (/) ) |
83 |
|
disjsn |
|- ( ( dom s i^i { <. a , b >. } ) = (/) <-> -. <. a , b >. e. dom s ) |
84 |
82 83
|
bitri |
|- ( ( s " { <. a , b >. } ) = (/) <-> -. <. a , b >. e. dom s ) |
85 |
84
|
necon2abii |
|- ( <. a , b >. e. dom s <-> ( s " { <. a , b >. } ) =/= (/) ) |
86 |
81 85
|
sylib |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> ( s " { <. a , b >. } ) =/= (/) ) |
87 |
|
df-fr |
|- ( T Fr C <-> A. g ( ( g C_ C /\ g =/= (/) ) -> E. c e. g A. f e. g -. f T c ) ) |
88 |
4 87
|
sylib |
|- ( ph -> A. g ( ( g C_ C /\ g =/= (/) ) -> E. c e. g A. f e. g -. f T c ) ) |
89 |
32
|
imaex |
|- ( s " { <. a , b >. } ) e. _V |
90 |
|
sseq1 |
|- ( g = ( s " { <. a , b >. } ) -> ( g C_ C <-> ( s " { <. a , b >. } ) C_ C ) ) |
91 |
|
neeq1 |
|- ( g = ( s " { <. a , b >. } ) -> ( g =/= (/) <-> ( s " { <. a , b >. } ) =/= (/) ) ) |
92 |
90 91
|
anbi12d |
|- ( g = ( s " { <. a , b >. } ) -> ( ( g C_ C /\ g =/= (/) ) <-> ( ( s " { <. a , b >. } ) C_ C /\ ( s " { <. a , b >. } ) =/= (/) ) ) ) |
93 |
|
raleq |
|- ( g = ( s " { <. a , b >. } ) -> ( A. f e. g -. f T c <-> A. f e. ( s " { <. a , b >. } ) -. f T c ) ) |
94 |
93
|
rexeqbi1dv |
|- ( g = ( s " { <. a , b >. } ) -> ( E. c e. g A. f e. g -. f T c <-> E. c e. ( s " { <. a , b >. } ) A. f e. ( s " { <. a , b >. } ) -. f T c ) ) |
95 |
92 94
|
imbi12d |
|- ( g = ( s " { <. a , b >. } ) -> ( ( ( g C_ C /\ g =/= (/) ) -> E. c e. g A. f e. g -. f T c ) <-> ( ( ( s " { <. a , b >. } ) C_ C /\ ( s " { <. a , b >. } ) =/= (/) ) -> E. c e. ( s " { <. a , b >. } ) A. f e. ( s " { <. a , b >. } ) -. f T c ) ) ) |
96 |
89 95
|
spcv |
|- ( A. g ( ( g C_ C /\ g =/= (/) ) -> E. c e. g A. f e. g -. f T c ) -> ( ( ( s " { <. a , b >. } ) C_ C /\ ( s " { <. a , b >. } ) =/= (/) ) -> E. c e. ( s " { <. a , b >. } ) A. f e. ( s " { <. a , b >. } ) -. f T c ) ) |
97 |
88 96
|
syl |
|- ( ph -> ( ( ( s " { <. a , b >. } ) C_ C /\ ( s " { <. a , b >. } ) =/= (/) ) -> E. c e. ( s " { <. a , b >. } ) A. f e. ( s " { <. a , b >. } ) -. f T c ) ) |
98 |
97
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> ( ( ( s " { <. a , b >. } ) C_ C /\ ( s " { <. a , b >. } ) =/= (/) ) -> E. c e. ( s " { <. a , b >. } ) A. f e. ( s " { <. a , b >. } ) -. f T c ) ) |
99 |
76 86 98
|
mp2and |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> E. c e. ( s " { <. a , b >. } ) A. f e. ( s " { <. a , b >. } ) -. f T c ) |
100 |
|
simprl |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> c e. ( s " { <. a , b >. } ) ) |
101 |
|
opex |
|- <. a , b >. e. _V |
102 |
|
vex |
|- c e. _V |
103 |
101 102
|
elimasn |
|- ( c e. ( s " { <. a , b >. } ) <-> <. <. a , b >. , c >. e. s ) |
104 |
100 103
|
sylib |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> <. <. a , b >. , c >. e. s ) |
105 |
|
simplrl |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> s C_ ( ( A X. B ) X. C ) ) |
106 |
105
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> s C_ ( ( A X. B ) X. C ) ) |
107 |
|
elxpxpss |
|- ( ( s C_ ( ( A X. B ) X. C ) /\ q e. s ) -> E. g E. h E. i q = <. <. g , h >. , i >. ) |
108 |
106 107
|
sylan |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> E. g E. h E. i q = <. <. g , h >. , i >. ) |
109 |
|
df-ne |
|- ( i =/= c <-> -. i = c ) |
110 |
109
|
con2bii |
|- ( i = c <-> -. i =/= c ) |
111 |
110
|
biimpi |
|- ( i = c -> -. i =/= c ) |
112 |
111
|
adantl |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i = c ) -> -. i =/= c ) |
113 |
112
|
intnand |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i = c ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) |
114 |
|
breq1 |
|- ( f = i -> ( f T c <-> i T c ) ) |
115 |
114
|
notbid |
|- ( f = i -> ( -. f T c <-> -. i T c ) ) |
116 |
|
simplrr |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) -> A. f e. ( s " { <. a , b >. } ) -. f T c ) |
117 |
116
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> A. f e. ( s " { <. a , b >. } ) -. f T c ) |
118 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> <. <. a , b >. , i >. e. s ) |
119 |
|
vex |
|- i e. _V |
120 |
101 119
|
elimasn |
|- ( i e. ( s " { <. a , b >. } ) <-> <. <. a , b >. , i >. e. s ) |
121 |
118 120
|
sylibr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> i e. ( s " { <. a , b >. } ) ) |
122 |
115 117 121
|
rspcdva |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> -. i T c ) |
123 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> i =/= c ) |
124 |
123
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> -. i = c ) |
125 |
|
ioran |
|- ( -. ( i T c \/ i = c ) <-> ( -. i T c /\ -. i = c ) ) |
126 |
122 124 125
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> -. ( i T c \/ i = c ) ) |
127 |
126
|
intn3an3d |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> -. ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) ) |
128 |
127
|
intnanrd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) /\ i =/= c ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) |
129 |
113 128
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) |
130 |
|
opeq2 |
|- ( h = b -> <. a , h >. = <. a , b >. ) |
131 |
130
|
opeq1d |
|- ( h = b -> <. <. a , h >. , i >. = <. <. a , b >. , i >. ) |
132 |
131
|
eleq1d |
|- ( h = b -> ( <. <. a , h >. , i >. e. s <-> <. <. a , b >. , i >. e. s ) ) |
133 |
132
|
anbi2d |
|- ( h = b -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) <-> ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) ) ) |
134 |
|
neeq1 |
|- ( h = b -> ( h =/= b <-> b =/= b ) ) |
135 |
134
|
orbi1d |
|- ( h = b -> ( ( h =/= b \/ i =/= c ) <-> ( b =/= b \/ i =/= c ) ) ) |
136 |
|
neirr |
|- -. b =/= b |
137 |
|
orel1 |
|- ( -. b =/= b -> ( ( b =/= b \/ i =/= c ) -> i =/= c ) ) |
138 |
136 137
|
ax-mp |
|- ( ( b =/= b \/ i =/= c ) -> i =/= c ) |
139 |
|
olc |
|- ( i =/= c -> ( b =/= b \/ i =/= c ) ) |
140 |
138 139
|
impbii |
|- ( ( b =/= b \/ i =/= c ) <-> i =/= c ) |
141 |
135 140
|
bitrdi |
|- ( h = b -> ( ( h =/= b \/ i =/= c ) <-> i =/= c ) ) |
142 |
141
|
anbi2d |
|- ( h = b -> ( ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) <-> ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) ) |
143 |
142
|
notbid |
|- ( h = b -> ( -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) <-> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) ) |
144 |
133 143
|
imbi12d |
|- ( h = b -> ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) <-> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , b >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) ) ) |
145 |
129 144
|
mpbiri |
|- ( h = b -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) |
146 |
145
|
impcom |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h = b ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) |
147 |
|
breq1 |
|- ( e = h -> ( e S b <-> h S b ) ) |
148 |
147
|
notbid |
|- ( e = h -> ( -. e S b <-> -. h S b ) ) |
149 |
|
simplrr |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> A. e e. ( dom s " { a } ) -. e S b ) |
150 |
149
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> A. e e. ( dom s " { a } ) -. e S b ) |
151 |
|
opex |
|- <. a , h >. e. _V |
152 |
151 119
|
opeldm |
|- ( <. <. a , h >. , i >. e. s -> <. a , h >. e. dom s ) |
153 |
152
|
adantl |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) -> <. a , h >. e. dom s ) |
154 |
153
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> <. a , h >. e. dom s ) |
155 |
|
vex |
|- h e. _V |
156 |
78 155
|
elimasn |
|- ( h e. ( dom s " { a } ) <-> <. a , h >. e. dom s ) |
157 |
154 156
|
sylibr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> h e. ( dom s " { a } ) ) |
158 |
148 150 157
|
rspcdva |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> -. h S b ) |
159 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> h =/= b ) |
160 |
159
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> -. h = b ) |
161 |
|
ioran |
|- ( -. ( h S b \/ h = b ) <-> ( -. h S b /\ -. h = b ) ) |
162 |
158 160 161
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> -. ( h S b \/ h = b ) ) |
163 |
162
|
intn3an2d |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> -. ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) ) |
164 |
163
|
intnanrd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) /\ h =/= b ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) |
165 |
146 164
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) |
166 |
|
opeq1 |
|- ( g = a -> <. g , h >. = <. a , h >. ) |
167 |
166
|
opeq1d |
|- ( g = a -> <. <. g , h >. , i >. = <. <. a , h >. , i >. ) |
168 |
167
|
eleq1d |
|- ( g = a -> ( <. <. g , h >. , i >. e. s <-> <. <. a , h >. , i >. e. s ) ) |
169 |
168
|
anbi2d |
|- ( g = a -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) <-> ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) ) ) |
170 |
|
3orass |
|- ( ( g =/= a \/ h =/= b \/ i =/= c ) <-> ( g =/= a \/ ( h =/= b \/ i =/= c ) ) ) |
171 |
|
neeq1 |
|- ( g = a -> ( g =/= a <-> a =/= a ) ) |
172 |
171
|
orbi1d |
|- ( g = a -> ( ( g =/= a \/ ( h =/= b \/ i =/= c ) ) <-> ( a =/= a \/ ( h =/= b \/ i =/= c ) ) ) ) |
173 |
170 172
|
syl5bb |
|- ( g = a -> ( ( g =/= a \/ h =/= b \/ i =/= c ) <-> ( a =/= a \/ ( h =/= b \/ i =/= c ) ) ) ) |
174 |
|
neirr |
|- -. a =/= a |
175 |
|
orel1 |
|- ( -. a =/= a -> ( ( a =/= a \/ ( h =/= b \/ i =/= c ) ) -> ( h =/= b \/ i =/= c ) ) ) |
176 |
174 175
|
ax-mp |
|- ( ( a =/= a \/ ( h =/= b \/ i =/= c ) ) -> ( h =/= b \/ i =/= c ) ) |
177 |
|
olc |
|- ( ( h =/= b \/ i =/= c ) -> ( a =/= a \/ ( h =/= b \/ i =/= c ) ) ) |
178 |
176 177
|
impbii |
|- ( ( a =/= a \/ ( h =/= b \/ i =/= c ) ) <-> ( h =/= b \/ i =/= c ) ) |
179 |
173 178
|
bitrdi |
|- ( g = a -> ( ( g =/= a \/ h =/= b \/ i =/= c ) <-> ( h =/= b \/ i =/= c ) ) ) |
180 |
179
|
anbi2d |
|- ( g = a -> ( ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) <-> ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) |
181 |
180
|
notbid |
|- ( g = a -> ( -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) <-> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) |
182 |
169 181
|
imbi12d |
|- ( g = a -> ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) <-> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. a , h >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) ) |
183 |
165 182
|
mpbiri |
|- ( g = a -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) |
184 |
183
|
impcom |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g = a ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) |
185 |
|
breq1 |
|- ( d = g -> ( d R a <-> g R a ) ) |
186 |
185
|
notbid |
|- ( d = g -> ( -. d R a <-> -. g R a ) ) |
187 |
|
simplrr |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> A. d e. dom dom s -. d R a ) |
188 |
187
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> A. d e. dom dom s -. d R a ) |
189 |
|
opex |
|- <. g , h >. e. _V |
190 |
189 119
|
opeldm |
|- ( <. <. g , h >. , i >. e. s -> <. g , h >. e. dom s ) |
191 |
190
|
adantl |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) -> <. g , h >. e. dom s ) |
192 |
|
vex |
|- g e. _V |
193 |
192 155
|
opeldm |
|- ( <. g , h >. e. dom s -> g e. dom dom s ) |
194 |
191 193
|
syl |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) -> g e. dom dom s ) |
195 |
194
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> g e. dom dom s ) |
196 |
186 188 195
|
rspcdva |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> -. g R a ) |
197 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> g =/= a ) |
198 |
197
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> -. g = a ) |
199 |
|
ioran |
|- ( -. ( g R a \/ g = a ) <-> ( -. g R a /\ -. g = a ) ) |
200 |
196 198 199
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> -. ( g R a \/ g = a ) ) |
201 |
200
|
intn3an1d |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> -. ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) ) |
202 |
201
|
intnanrd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) /\ g =/= a ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) |
203 |
184 202
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) |
204 |
203
|
intn3an3d |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) -> -. ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) |
205 |
|
eleq1 |
|- ( q = <. <. g , h >. , i >. -> ( q e. s <-> <. <. g , h >. , i >. e. s ) ) |
206 |
205
|
anbi2d |
|- ( q = <. <. g , h >. , i >. -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) <-> ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) ) ) |
207 |
|
breq1 |
|- ( q = <. <. g , h >. , i >. -> ( q U <. <. a , b >. , c >. <-> <. <. g , h >. , i >. U <. <. a , b >. , c >. ) ) |
208 |
1
|
xpord3lem |
|- ( <. <. g , h >. , i >. U <. <. a , b >. , c >. <-> ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) |
209 |
207 208
|
bitrdi |
|- ( q = <. <. g , h >. , i >. -> ( q U <. <. a , b >. , c >. <-> ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) ) |
210 |
209
|
notbid |
|- ( q = <. <. g , h >. , i >. -> ( -. q U <. <. a , b >. , c >. <-> -. ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) ) |
211 |
206 210
|
imbi12d |
|- ( q = <. <. g , h >. , i >. -> ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> -. q U <. <. a , b >. , c >. ) <-> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. <. g , h >. , i >. e. s ) -> -. ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) ) ) |
212 |
204 211
|
mpbiri |
|- ( q = <. <. g , h >. , i >. -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> -. q U <. <. a , b >. , c >. ) ) |
213 |
212
|
com12 |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> ( q = <. <. g , h >. , i >. -> -. q U <. <. a , b >. , c >. ) ) |
214 |
213
|
exlimdv |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> ( E. i q = <. <. g , h >. , i >. -> -. q U <. <. a , b >. , c >. ) ) |
215 |
214
|
exlimdvv |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> ( E. g E. h E. i q = <. <. g , h >. , i >. -> -. q U <. <. a , b >. , c >. ) ) |
216 |
108 215
|
mpd |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> -. q U <. <. a , b >. , c >. ) |
217 |
216
|
ralrimiva |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> A. q e. s -. q U <. <. a , b >. , c >. ) |
218 |
|
breq2 |
|- ( p = <. <. a , b >. , c >. -> ( q U p <-> q U <. <. a , b >. , c >. ) ) |
219 |
218
|
notbid |
|- ( p = <. <. a , b >. , c >. -> ( -. q U p <-> -. q U <. <. a , b >. , c >. ) ) |
220 |
219
|
ralbidv |
|- ( p = <. <. a , b >. , c >. -> ( A. q e. s -. q U p <-> A. q e. s -. q U <. <. a , b >. , c >. ) ) |
221 |
220
|
rspcev |
|- ( ( <. <. a , b >. , c >. e. s /\ A. q e. s -. q U <. <. a , b >. , c >. ) -> E. p e. s A. q e. s -. q U p ) |
222 |
104 217 221
|
syl2anc |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> E. p e. s A. q e. s -. q U p ) |
223 |
99 222
|
rexlimddv |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> E. p e. s A. q e. s -. q U p ) |
224 |
69 223
|
rexlimddv |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> E. p e. s A. q e. s -. q U p ) |
225 |
43 224
|
rexlimddv |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> E. p e. s A. q e. s -. q U p ) |
226 |
225
|
ex |
|- ( ph -> ( ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) -> E. p e. s A. q e. s -. q U p ) ) |
227 |
226
|
alrimiv |
|- ( ph -> A. s ( ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) -> E. p e. s A. q e. s -. q U p ) ) |
228 |
|
df-fr |
|- ( U Fr ( ( A X. B ) X. C ) <-> A. s ( ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) -> E. p e. s A. q e. s -. q U p ) ) |
229 |
227 228
|
sylibr |
|- ( ph -> U Fr ( ( A X. B ) X. C ) ) |