Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
|- U = { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } |
2 |
|
frxp3.1 |
|- ( ph -> R Fr A ) |
3 |
|
frxp3.2 |
|- ( ph -> S Fr B ) |
4 |
|
frxp3.3 |
|- ( ph -> T Fr C ) |
5 |
2
|
adantr |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> R Fr A ) |
6 |
|
dmss |
|- ( s C_ ( ( A X. B ) X. C ) -> dom s C_ dom ( ( A X. B ) X. C ) ) |
7 |
6
|
ad2antrl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom s C_ dom ( ( A X. B ) X. C ) ) |
8 |
|
dmxpss |
|- dom ( ( A X. B ) X. C ) C_ ( A X. B ) |
9 |
7 8
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom s C_ ( A X. B ) ) |
10 |
|
dmss |
|- ( dom s C_ ( A X. B ) -> dom dom s C_ dom ( A X. B ) ) |
11 |
9 10
|
syl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom dom s C_ dom ( A X. B ) ) |
12 |
|
dmxpss |
|- dom ( A X. B ) C_ A |
13 |
11 12
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom dom s C_ A ) |
14 |
|
vex |
|- s e. _V |
15 |
14
|
dmex |
|- dom s e. _V |
16 |
15
|
dmex |
|- dom dom s e. _V |
17 |
16
|
a1i |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom dom s e. _V ) |
18 |
|
relxp |
|- Rel ( ( A X. B ) X. C ) |
19 |
|
relss |
|- ( s C_ ( ( A X. B ) X. C ) -> ( Rel ( ( A X. B ) X. C ) -> Rel s ) ) |
20 |
18 19
|
mpi |
|- ( s C_ ( ( A X. B ) X. C ) -> Rel s ) |
21 |
20
|
adantl |
|- ( ( ph /\ s C_ ( ( A X. B ) X. C ) ) -> Rel s ) |
22 |
|
reldm0 |
|- ( Rel s -> ( s = (/) <-> dom s = (/) ) ) |
23 |
21 22
|
syl |
|- ( ( ph /\ s C_ ( ( A X. B ) X. C ) ) -> ( s = (/) <-> dom s = (/) ) ) |
24 |
|
relxp |
|- Rel ( A X. B ) |
25 |
|
relss |
|- ( dom ( ( A X. B ) X. C ) C_ ( A X. B ) -> ( Rel ( A X. B ) -> Rel dom ( ( A X. B ) X. C ) ) ) |
26 |
8 24 25
|
mp2 |
|- Rel dom ( ( A X. B ) X. C ) |
27 |
|
relss |
|- ( dom s C_ dom ( ( A X. B ) X. C ) -> ( Rel dom ( ( A X. B ) X. C ) -> Rel dom s ) ) |
28 |
6 26 27
|
mpisyl |
|- ( s C_ ( ( A X. B ) X. C ) -> Rel dom s ) |
29 |
28
|
adantl |
|- ( ( ph /\ s C_ ( ( A X. B ) X. C ) ) -> Rel dom s ) |
30 |
|
reldm0 |
|- ( Rel dom s -> ( dom s = (/) <-> dom dom s = (/) ) ) |
31 |
29 30
|
syl |
|- ( ( ph /\ s C_ ( ( A X. B ) X. C ) ) -> ( dom s = (/) <-> dom dom s = (/) ) ) |
32 |
23 31
|
bitrd |
|- ( ( ph /\ s C_ ( ( A X. B ) X. C ) ) -> ( s = (/) <-> dom dom s = (/) ) ) |
33 |
32
|
necon3bid |
|- ( ( ph /\ s C_ ( ( A X. B ) X. C ) ) -> ( s =/= (/) <-> dom dom s =/= (/) ) ) |
34 |
33
|
biimpa |
|- ( ( ( ph /\ s C_ ( ( A X. B ) X. C ) ) /\ s =/= (/) ) -> dom dom s =/= (/) ) |
35 |
34
|
anasss |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> dom dom s =/= (/) ) |
36 |
5 13 17 35
|
frd |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> E. a e. dom dom s A. d e. dom dom s -. d R a ) |
37 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> S Fr B ) |
38 |
|
imassrn |
|- ( dom s " { a } ) C_ ran dom s |
39 |
|
rnss |
|- ( dom s C_ ( A X. B ) -> ran dom s C_ ran ( A X. B ) ) |
40 |
9 39
|
syl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran dom s C_ ran ( A X. B ) ) |
41 |
|
rnxpss |
|- ran ( A X. B ) C_ B |
42 |
40 41
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran dom s C_ B ) |
43 |
38 42
|
sstrid |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( dom s " { a } ) C_ B ) |
44 |
43
|
adantr |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> ( dom s " { a } ) C_ B ) |
45 |
15
|
imaex |
|- ( dom s " { a } ) e. _V |
46 |
45
|
a1i |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> ( dom s " { a } ) e. _V ) |
47 |
|
imadisj |
|- ( ( dom s " { a } ) = (/) <-> ( dom dom s i^i { a } ) = (/) ) |
48 |
|
disjsn |
|- ( ( dom dom s i^i { a } ) = (/) <-> -. a e. dom dom s ) |
49 |
47 48
|
bitri |
|- ( ( dom s " { a } ) = (/) <-> -. a e. dom dom s ) |
50 |
49
|
necon2abii |
|- ( a e. dom dom s <-> ( dom s " { a } ) =/= (/) ) |
51 |
50
|
biimpi |
|- ( a e. dom dom s -> ( dom s " { a } ) =/= (/) ) |
52 |
51
|
ad2antrl |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> ( dom s " { a } ) =/= (/) ) |
53 |
37 44 46 52
|
frd |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> E. b e. ( dom s " { a } ) A. e e. ( dom s " { a } ) -. e S b ) |
54 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> T Fr C ) |
55 |
|
imassrn |
|- ( s " { <. a , b >. } ) C_ ran s |
56 |
|
rnss |
|- ( s C_ ( ( A X. B ) X. C ) -> ran s C_ ran ( ( A X. B ) X. C ) ) |
57 |
56
|
ad2antrl |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran s C_ ran ( ( A X. B ) X. C ) ) |
58 |
|
rnxpss |
|- ran ( ( A X. B ) X. C ) C_ C |
59 |
57 58
|
sstrdi |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ran s C_ C ) |
60 |
55 59
|
sstrid |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> ( s " { <. a , b >. } ) C_ C ) |
61 |
60
|
ad2antrr |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> ( s " { <. a , b >. } ) C_ C ) |
62 |
14
|
imaex |
|- ( s " { <. a , b >. } ) e. _V |
63 |
62
|
a1i |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> ( s " { <. a , b >. } ) e. _V ) |
64 |
|
simprl |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> b e. ( dom s " { a } ) ) |
65 |
|
vex |
|- a e. _V |
66 |
|
vex |
|- b e. _V |
67 |
65 66
|
elimasn |
|- ( b e. ( dom s " { a } ) <-> <. a , b >. e. dom s ) |
68 |
64 67
|
sylib |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> <. a , b >. e. dom s ) |
69 |
|
imadisj |
|- ( ( s " { <. a , b >. } ) = (/) <-> ( dom s i^i { <. a , b >. } ) = (/) ) |
70 |
|
disjsn |
|- ( ( dom s i^i { <. a , b >. } ) = (/) <-> -. <. a , b >. e. dom s ) |
71 |
69 70
|
bitri |
|- ( ( s " { <. a , b >. } ) = (/) <-> -. <. a , b >. e. dom s ) |
72 |
71
|
necon2abii |
|- ( <. a , b >. e. dom s <-> ( s " { <. a , b >. } ) =/= (/) ) |
73 |
68 72
|
sylib |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> ( s " { <. a , b >. } ) =/= (/) ) |
74 |
54 61 63 73
|
frd |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> E. c e. ( s " { <. a , b >. } ) A. f e. ( s " { <. a , b >. } ) -. f T c ) |
75 |
|
df-ot |
|- <. a , b , c >. = <. <. a , b >. , c >. |
76 |
|
simprl |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> c e. ( s " { <. a , b >. } ) ) |
77 |
|
opex |
|- <. a , b >. e. _V |
78 |
|
vex |
|- c e. _V |
79 |
77 78
|
elimasn |
|- ( c e. ( s " { <. a , b >. } ) <-> <. <. a , b >. , c >. e. s ) |
80 |
76 79
|
sylib |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> <. <. a , b >. , c >. e. s ) |
81 |
75 80
|
eqeltrid |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> <. a , b , c >. e. s ) |
82 |
|
simplrl |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> s C_ ( ( A X. B ) X. C ) ) |
83 |
82
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> s C_ ( ( A X. B ) X. C ) ) |
84 |
|
el2xpss |
|- ( ( q e. s /\ s C_ ( ( A X. B ) X. C ) ) -> E. g E. h E. i q = <. g , h , i >. ) |
85 |
84
|
ancoms |
|- ( ( s C_ ( ( A X. B ) X. C ) /\ q e. s ) -> E. g E. h E. i q = <. g , h , i >. ) |
86 |
83 85
|
sylan |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> E. g E. h E. i q = <. g , h , i >. ) |
87 |
|
df-ne |
|- ( i =/= c <-> -. i = c ) |
88 |
87
|
con2bii |
|- ( i = c <-> -. i =/= c ) |
89 |
88
|
biimpi |
|- ( i = c -> -. i =/= c ) |
90 |
89
|
intnand |
|- ( i = c -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) |
91 |
90
|
adantl |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i = c ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) |
92 |
|
breq1 |
|- ( f = i -> ( f T c <-> i T c ) ) |
93 |
92
|
notbid |
|- ( f = i -> ( -. f T c <-> -. i T c ) ) |
94 |
|
simplrr |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) -> A. f e. ( s " { <. a , b >. } ) -. f T c ) |
95 |
94
|
adantr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> A. f e. ( s " { <. a , b >. } ) -. f T c ) |
96 |
|
df-ot |
|- <. a , b , i >. = <. <. a , b >. , i >. |
97 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> <. a , b , i >. e. s ) |
98 |
96 97
|
eqeltrrid |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> <. <. a , b >. , i >. e. s ) |
99 |
|
vex |
|- i e. _V |
100 |
77 99
|
elimasn |
|- ( i e. ( s " { <. a , b >. } ) <-> <. <. a , b >. , i >. e. s ) |
101 |
98 100
|
sylibr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> i e. ( s " { <. a , b >. } ) ) |
102 |
93 95 101
|
rspcdva |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> -. i T c ) |
103 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> i =/= c ) |
104 |
103
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> -. i = c ) |
105 |
|
ioran |
|- ( -. ( i T c \/ i = c ) <-> ( -. i T c /\ -. i = c ) ) |
106 |
102 104 105
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> -. ( i T c \/ i = c ) ) |
107 |
106
|
intn3an3d |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> -. ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) ) |
108 |
107
|
intnanrd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) /\ i =/= c ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) |
109 |
91 108
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) |
110 |
|
oteq2 |
|- ( h = b -> <. a , h , i >. = <. a , b , i >. ) |
111 |
110
|
eleq1d |
|- ( h = b -> ( <. a , h , i >. e. s <-> <. a , b , i >. e. s ) ) |
112 |
111
|
anbi2d |
|- ( h = b -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) <-> ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) ) ) |
113 |
|
neeq1 |
|- ( h = b -> ( h =/= b <-> b =/= b ) ) |
114 |
113
|
orbi1d |
|- ( h = b -> ( ( h =/= b \/ i =/= c ) <-> ( b =/= b \/ i =/= c ) ) ) |
115 |
|
neirr |
|- -. b =/= b |
116 |
|
orel1 |
|- ( -. b =/= b -> ( ( b =/= b \/ i =/= c ) -> i =/= c ) ) |
117 |
115 116
|
ax-mp |
|- ( ( b =/= b \/ i =/= c ) -> i =/= c ) |
118 |
|
olc |
|- ( i =/= c -> ( b =/= b \/ i =/= c ) ) |
119 |
117 118
|
impbii |
|- ( ( b =/= b \/ i =/= c ) <-> i =/= c ) |
120 |
114 119
|
bitrdi |
|- ( h = b -> ( ( h =/= b \/ i =/= c ) <-> i =/= c ) ) |
121 |
120
|
anbi2d |
|- ( h = b -> ( ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) <-> ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) ) |
122 |
121
|
notbid |
|- ( h = b -> ( -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) <-> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) ) |
123 |
112 122
|
imbi12d |
|- ( h = b -> ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) <-> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , b , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ i =/= c ) ) ) ) |
124 |
109 123
|
mpbiri |
|- ( h = b -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) |
125 |
124
|
impcom |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h = b ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) |
126 |
|
breq1 |
|- ( e = h -> ( e S b <-> h S b ) ) |
127 |
126
|
notbid |
|- ( e = h -> ( -. e S b <-> -. h S b ) ) |
128 |
|
simplrr |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> A. e e. ( dom s " { a } ) -. e S b ) |
129 |
128
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> A. e e. ( dom s " { a } ) -. e S b ) |
130 |
|
df-ot |
|- <. a , h , i >. = <. <. a , h >. , i >. |
131 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> <. a , h , i >. e. s ) |
132 |
130 131
|
eqeltrrid |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> <. <. a , h >. , i >. e. s ) |
133 |
|
opex |
|- <. a , h >. e. _V |
134 |
133 99
|
opeldm |
|- ( <. <. a , h >. , i >. e. s -> <. a , h >. e. dom s ) |
135 |
132 134
|
syl |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> <. a , h >. e. dom s ) |
136 |
|
vex |
|- h e. _V |
137 |
65 136
|
elimasn |
|- ( h e. ( dom s " { a } ) <-> <. a , h >. e. dom s ) |
138 |
135 137
|
sylibr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> h e. ( dom s " { a } ) ) |
139 |
127 129 138
|
rspcdva |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> -. h S b ) |
140 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> h =/= b ) |
141 |
140
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> -. h = b ) |
142 |
|
ioran |
|- ( -. ( h S b \/ h = b ) <-> ( -. h S b /\ -. h = b ) ) |
143 |
139 141 142
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> -. ( h S b \/ h = b ) ) |
144 |
143
|
intn3an2d |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> -. ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) ) |
145 |
144
|
intnanrd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) /\ h =/= b ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) |
146 |
125 145
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) |
147 |
|
oteq1 |
|- ( g = a -> <. g , h , i >. = <. a , h , i >. ) |
148 |
147
|
eleq1d |
|- ( g = a -> ( <. g , h , i >. e. s <-> <. a , h , i >. e. s ) ) |
149 |
148
|
anbi2d |
|- ( g = a -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) <-> ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) ) ) |
150 |
|
neeq1 |
|- ( g = a -> ( g =/= a <-> a =/= a ) ) |
151 |
|
biidd |
|- ( g = a -> ( h =/= b <-> h =/= b ) ) |
152 |
|
biidd |
|- ( g = a -> ( i =/= c <-> i =/= c ) ) |
153 |
150 151 152
|
3orbi123d |
|- ( g = a -> ( ( g =/= a \/ h =/= b \/ i =/= c ) <-> ( a =/= a \/ h =/= b \/ i =/= c ) ) ) |
154 |
|
3orass |
|- ( ( a =/= a \/ h =/= b \/ i =/= c ) <-> ( a =/= a \/ ( h =/= b \/ i =/= c ) ) ) |
155 |
|
neirr |
|- -. a =/= a |
156 |
|
orel1 |
|- ( -. a =/= a -> ( ( a =/= a \/ ( h =/= b \/ i =/= c ) ) -> ( h =/= b \/ i =/= c ) ) ) |
157 |
155 156
|
ax-mp |
|- ( ( a =/= a \/ ( h =/= b \/ i =/= c ) ) -> ( h =/= b \/ i =/= c ) ) |
158 |
|
olc |
|- ( ( h =/= b \/ i =/= c ) -> ( a =/= a \/ ( h =/= b \/ i =/= c ) ) ) |
159 |
157 158
|
impbii |
|- ( ( a =/= a \/ ( h =/= b \/ i =/= c ) ) <-> ( h =/= b \/ i =/= c ) ) |
160 |
154 159
|
bitri |
|- ( ( a =/= a \/ h =/= b \/ i =/= c ) <-> ( h =/= b \/ i =/= c ) ) |
161 |
153 160
|
bitrdi |
|- ( g = a -> ( ( g =/= a \/ h =/= b \/ i =/= c ) <-> ( h =/= b \/ i =/= c ) ) ) |
162 |
161
|
anbi2d |
|- ( g = a -> ( ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) <-> ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) |
163 |
162
|
notbid |
|- ( g = a -> ( -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) <-> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) |
164 |
149 163
|
imbi12d |
|- ( g = a -> ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) <-> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. a , h , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( h =/= b \/ i =/= c ) ) ) ) ) |
165 |
146 164
|
mpbiri |
|- ( g = a -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) |
166 |
165
|
impcom |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g = a ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) |
167 |
|
breq1 |
|- ( d = g -> ( d R a <-> g R a ) ) |
168 |
167
|
notbid |
|- ( d = g -> ( -. d R a <-> -. g R a ) ) |
169 |
|
simplrr |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> A. d e. dom dom s -. d R a ) |
170 |
169
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> A. d e. dom dom s -. d R a ) |
171 |
|
df-ot |
|- <. g , h , i >. = <. <. g , h >. , i >. |
172 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> <. g , h , i >. e. s ) |
173 |
171 172
|
eqeltrrid |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> <. <. g , h >. , i >. e. s ) |
174 |
|
opex |
|- <. g , h >. e. _V |
175 |
174 99
|
opeldm |
|- ( <. <. g , h >. , i >. e. s -> <. g , h >. e. dom s ) |
176 |
|
vex |
|- g e. _V |
177 |
176 136
|
opeldm |
|- ( <. g , h >. e. dom s -> g e. dom dom s ) |
178 |
173 175 177
|
3syl |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> g e. dom dom s ) |
179 |
168 170 178
|
rspcdva |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> -. g R a ) |
180 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> g =/= a ) |
181 |
180
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> -. g = a ) |
182 |
|
ioran |
|- ( -. ( g R a \/ g = a ) <-> ( -. g R a /\ -. g = a ) ) |
183 |
179 181 182
|
sylanbrc |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> -. ( g R a \/ g = a ) ) |
184 |
183
|
intn3an1d |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> -. ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) ) |
185 |
184
|
intnanrd |
|- ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) /\ g =/= a ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) |
186 |
166 185
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) -> -. ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) |
187 |
186
|
intn3an3d |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) -> -. ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) |
188 |
|
eleq1 |
|- ( q = <. g , h , i >. -> ( q e. s <-> <. g , h , i >. e. s ) ) |
189 |
188
|
anbi2d |
|- ( q = <. g , h , i >. -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) <-> ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) ) ) |
190 |
|
breq1 |
|- ( q = <. g , h , i >. -> ( q U <. a , b , c >. <-> <. g , h , i >. U <. a , b , c >. ) ) |
191 |
1
|
xpord3lem |
|- ( <. g , h , i >. U <. a , b , c >. <-> ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) |
192 |
190 191
|
bitrdi |
|- ( q = <. g , h , i >. -> ( q U <. a , b , c >. <-> ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) ) |
193 |
192
|
notbid |
|- ( q = <. g , h , i >. -> ( -. q U <. a , b , c >. <-> -. ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) ) |
194 |
189 193
|
imbi12d |
|- ( q = <. g , h , i >. -> ( ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> -. q U <. a , b , c >. ) <-> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ <. g , h , i >. e. s ) -> -. ( ( g e. A /\ h e. B /\ i e. C ) /\ ( a e. A /\ b e. B /\ c e. C ) /\ ( ( ( g R a \/ g = a ) /\ ( h S b \/ h = b ) /\ ( i T c \/ i = c ) ) /\ ( g =/= a \/ h =/= b \/ i =/= c ) ) ) ) ) ) |
195 |
187 194
|
mpbiri |
|- ( q = <. g , h , i >. -> ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> -. q U <. a , b , c >. ) ) |
196 |
195
|
com12 |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> ( q = <. g , h , i >. -> -. q U <. a , b , c >. ) ) |
197 |
196
|
exlimdv |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> ( E. i q = <. g , h , i >. -> -. q U <. a , b , c >. ) ) |
198 |
197
|
exlimdvv |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> ( E. g E. h E. i q = <. g , h , i >. -> -. q U <. a , b , c >. ) ) |
199 |
86 198
|
mpd |
|- ( ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) /\ q e. s ) -> -. q U <. a , b , c >. ) |
200 |
199
|
ralrimiva |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> A. q e. s -. q U <. a , b , c >. ) |
201 |
|
breq2 |
|- ( p = <. a , b , c >. -> ( q U p <-> q U <. a , b , c >. ) ) |
202 |
201
|
notbid |
|- ( p = <. a , b , c >. -> ( -. q U p <-> -. q U <. a , b , c >. ) ) |
203 |
202
|
ralbidv |
|- ( p = <. a , b , c >. -> ( A. q e. s -. q U p <-> A. q e. s -. q U <. a , b , c >. ) ) |
204 |
203
|
rspcev |
|- ( ( <. a , b , c >. e. s /\ A. q e. s -. q U <. a , b , c >. ) -> E. p e. s A. q e. s -. q U p ) |
205 |
81 200 204
|
syl2anc |
|- ( ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) /\ ( c e. ( s " { <. a , b >. } ) /\ A. f e. ( s " { <. a , b >. } ) -. f T c ) ) -> E. p e. s A. q e. s -. q U p ) |
206 |
74 205
|
rexlimddv |
|- ( ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) /\ ( b e. ( dom s " { a } ) /\ A. e e. ( dom s " { a } ) -. e S b ) ) -> E. p e. s A. q e. s -. q U p ) |
207 |
53 206
|
rexlimddv |
|- ( ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) /\ ( a e. dom dom s /\ A. d e. dom dom s -. d R a ) ) -> E. p e. s A. q e. s -. q U p ) |
208 |
36 207
|
rexlimddv |
|- ( ( ph /\ ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) ) -> E. p e. s A. q e. s -. q U p ) |
209 |
208
|
ex |
|- ( ph -> ( ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) -> E. p e. s A. q e. s -. q U p ) ) |
210 |
209
|
alrimiv |
|- ( ph -> A. s ( ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) -> E. p e. s A. q e. s -. q U p ) ) |
211 |
|
df-fr |
|- ( U Fr ( ( A X. B ) X. C ) <-> A. s ( ( s C_ ( ( A X. B ) X. C ) /\ s =/= (/) ) -> E. p e. s A. q e. s -. q U p ) ) |
212 |
210 211
|
sylibr |
|- ( ph -> U Fr ( ( A X. B ) X. C ) ) |