| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpord3.1 |
⊢ 𝑈 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ( 1st ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑇 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
| 2 |
|
frxp3.1 |
⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) |
| 3 |
|
frxp3.2 |
⊢ ( 𝜑 → 𝑆 Fr 𝐵 ) |
| 4 |
|
frxp3.3 |
⊢ ( 𝜑 → 𝑇 Fr 𝐶 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → 𝑅 Fr 𝐴 ) |
| 6 |
|
dmss |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
| 7 |
6
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
| 8 |
|
dmxpss |
⊢ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ ( 𝐴 × 𝐵 ) |
| 9 |
7 8
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) |
| 10 |
|
dmss |
⊢ ( dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
| 12 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
| 13 |
11 12
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ⊆ 𝐴 ) |
| 14 |
|
vex |
⊢ 𝑠 ∈ V |
| 15 |
14
|
dmex |
⊢ dom 𝑠 ∈ V |
| 16 |
15
|
dmex |
⊢ dom dom 𝑠 ∈ V |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ∈ V ) |
| 18 |
|
relxp |
⊢ Rel ( ( 𝐴 × 𝐵 ) × 𝐶 ) |
| 19 |
|
relss |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( Rel ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel 𝑠 ) ) |
| 20 |
18 19
|
mpi |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel 𝑠 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → Rel 𝑠 ) |
| 22 |
|
reldm0 |
⊢ ( Rel 𝑠 → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
| 24 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
| 25 |
|
relss |
⊢ ( dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ ( 𝐴 × 𝐵 ) → ( Rel ( 𝐴 × 𝐵 ) → Rel dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ) |
| 26 |
8 24 25
|
mp2 |
⊢ Rel dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) |
| 27 |
|
relss |
⊢ ( dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( Rel dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel dom 𝑠 ) ) |
| 28 |
6 26 27
|
mpisyl |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel dom 𝑠 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → Rel dom 𝑠 ) |
| 30 |
|
reldm0 |
⊢ ( Rel dom 𝑠 → ( dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) ) |
| 32 |
23 31
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) ) |
| 33 |
32
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( 𝑠 ≠ ∅ ↔ dom dom 𝑠 ≠ ∅ ) ) |
| 34 |
33
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ∧ 𝑠 ≠ ∅ ) → dom dom 𝑠 ≠ ∅ ) |
| 35 |
34
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ≠ ∅ ) |
| 36 |
5 13 17 35
|
frd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑎 ∈ dom dom 𝑠 ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) |
| 37 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → 𝑆 Fr 𝐵 ) |
| 38 |
|
imassrn |
⊢ ( dom 𝑠 “ { 𝑎 } ) ⊆ ran dom 𝑠 |
| 39 |
|
rnss |
⊢ ( dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran dom 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
| 40 |
9 39
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran dom 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
| 41 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
| 42 |
40 41
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran dom 𝑠 ⊆ 𝐵 ) |
| 43 |
38 42
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) |
| 45 |
15
|
imaex |
⊢ ( dom 𝑠 “ { 𝑎 } ) ∈ V |
| 46 |
45
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ∈ V ) |
| 47 |
|
imadisj |
⊢ ( ( dom 𝑠 “ { 𝑎 } ) = ∅ ↔ ( dom dom 𝑠 ∩ { 𝑎 } ) = ∅ ) |
| 48 |
|
disjsn |
⊢ ( ( dom dom 𝑠 ∩ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠 ) |
| 49 |
47 48
|
bitri |
⊢ ( ( dom 𝑠 “ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠 ) |
| 50 |
49
|
necon2abii |
⊢ ( 𝑎 ∈ dom dom 𝑠 ↔ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 51 |
50
|
biimpi |
⊢ ( 𝑎 ∈ dom dom 𝑠 → ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 52 |
51
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 53 |
37 44 46 52
|
frd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) |
| 54 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → 𝑇 Fr 𝐶 ) |
| 55 |
|
imassrn |
⊢ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ ran 𝑠 |
| 56 |
|
rnss |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ran 𝑠 ⊆ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
| 57 |
56
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran 𝑠 ⊆ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
| 58 |
|
rnxpss |
⊢ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ 𝐶 |
| 59 |
57 58
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran 𝑠 ⊆ 𝐶 ) |
| 60 |
55 59
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ) |
| 61 |
60
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ) |
| 62 |
14
|
imaex |
⊢ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∈ V |
| 63 |
62
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∈ V ) |
| 64 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ) |
| 65 |
|
vex |
⊢ 𝑎 ∈ V |
| 66 |
|
vex |
⊢ 𝑏 ∈ V |
| 67 |
65 66
|
elimasn |
⊢ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
| 68 |
64 67
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
| 69 |
|
imadisj |
⊢ ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ↔ ( dom 𝑠 ∩ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ) |
| 70 |
|
disjsn |
⊢ ( ( dom 𝑠 ∩ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
| 71 |
69 70
|
bitri |
⊢ ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
| 72 |
71
|
necon2abii |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ↔ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) |
| 73 |
68 72
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) |
| 74 |
54 61 63 73
|
frd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∃ 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) |
| 75 |
|
df-ot |
⊢ 〈 𝑎 , 𝑏 , 𝑐 〉 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 |
| 76 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ) |
| 77 |
|
opex |
⊢ 〈 𝑎 , 𝑏 〉 ∈ V |
| 78 |
|
vex |
⊢ 𝑐 ∈ V |
| 79 |
77 78
|
elimasn |
⊢ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ↔ 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∈ 𝑠 ) |
| 80 |
76 79
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∈ 𝑠 ) |
| 81 |
75 80
|
eqeltrid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → 〈 𝑎 , 𝑏 , 𝑐 〉 ∈ 𝑠 ) |
| 82 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
| 83 |
82
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
| 84 |
|
el2xpss |
⊢ ( ( 𝑞 ∈ 𝑠 ∧ 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 ) |
| 85 |
84
|
ancoms |
⊢ ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ 𝑠 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 ) |
| 86 |
83 85
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 ) |
| 87 |
|
df-ne |
⊢ ( 𝑖 ≠ 𝑐 ↔ ¬ 𝑖 = 𝑐 ) |
| 88 |
87
|
con2bii |
⊢ ( 𝑖 = 𝑐 ↔ ¬ 𝑖 ≠ 𝑐 ) |
| 89 |
88
|
biimpi |
⊢ ( 𝑖 = 𝑐 → ¬ 𝑖 ≠ 𝑐 ) |
| 90 |
89
|
intnand |
⊢ ( 𝑖 = 𝑐 → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) |
| 91 |
90
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 = 𝑐 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) |
| 92 |
|
breq1 |
⊢ ( 𝑓 = 𝑖 → ( 𝑓 𝑇 𝑐 ↔ 𝑖 𝑇 𝑐 ) ) |
| 93 |
92
|
notbid |
⊢ ( 𝑓 = 𝑖 → ( ¬ 𝑓 𝑇 𝑐 ↔ ¬ 𝑖 𝑇 𝑐 ) ) |
| 94 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) |
| 95 |
94
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) |
| 96 |
|
df-ot |
⊢ 〈 𝑎 , 𝑏 , 𝑖 〉 = 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 |
| 97 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) |
| 98 |
96 97
|
eqeltrrid |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) |
| 99 |
|
vex |
⊢ 𝑖 ∈ V |
| 100 |
77 99
|
elimasn |
⊢ ( 𝑖 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ↔ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) |
| 101 |
98 100
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → 𝑖 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ) |
| 102 |
93 95 101
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ 𝑖 𝑇 𝑐 ) |
| 103 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → 𝑖 ≠ 𝑐 ) |
| 104 |
103
|
neneqd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ 𝑖 = 𝑐 ) |
| 105 |
|
ioran |
⊢ ( ¬ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ↔ ( ¬ 𝑖 𝑇 𝑐 ∧ ¬ 𝑖 = 𝑐 ) ) |
| 106 |
102 104 105
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) |
| 107 |
106
|
intn3an3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ) |
| 108 |
107
|
intnanrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) |
| 109 |
91 108
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) |
| 110 |
|
oteq2 |
⊢ ( ℎ = 𝑏 → 〈 𝑎 , ℎ , 𝑖 〉 = 〈 𝑎 , 𝑏 , 𝑖 〉 ) |
| 111 |
110
|
eleq1d |
⊢ ( ℎ = 𝑏 → ( 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ↔ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ) |
| 112 |
111
|
anbi2d |
⊢ ( ℎ = 𝑏 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) ) ) |
| 113 |
|
neeq1 |
⊢ ( ℎ = 𝑏 → ( ℎ ≠ 𝑏 ↔ 𝑏 ≠ 𝑏 ) ) |
| 114 |
113
|
orbi1d |
⊢ ( ℎ = 𝑏 → ( ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 115 |
|
neirr |
⊢ ¬ 𝑏 ≠ 𝑏 |
| 116 |
|
orel1 |
⊢ ( ¬ 𝑏 ≠ 𝑏 → ( ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) → 𝑖 ≠ 𝑐 ) ) |
| 117 |
115 116
|
ax-mp |
⊢ ( ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) → 𝑖 ≠ 𝑐 ) |
| 118 |
|
olc |
⊢ ( 𝑖 ≠ 𝑐 → ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) |
| 119 |
117 118
|
impbii |
⊢ ( ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ 𝑖 ≠ 𝑐 ) |
| 120 |
114 119
|
bitrdi |
⊢ ( ℎ = 𝑏 → ( ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ 𝑖 ≠ 𝑐 ) ) |
| 121 |
120
|
anbi2d |
⊢ ( ℎ = 𝑏 → ( ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) ) |
| 122 |
121
|
notbid |
⊢ ( ℎ = 𝑏 → ( ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) ) |
| 123 |
112 122
|
imbi12d |
⊢ ( ℎ = 𝑏 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , 𝑏 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) ) ) |
| 124 |
109 123
|
mpbiri |
⊢ ( ℎ = 𝑏 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
| 125 |
124
|
impcom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ = 𝑏 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 126 |
|
breq1 |
⊢ ( 𝑒 = ℎ → ( 𝑒 𝑆 𝑏 ↔ ℎ 𝑆 𝑏 ) ) |
| 127 |
126
|
notbid |
⊢ ( 𝑒 = ℎ → ( ¬ 𝑒 𝑆 𝑏 ↔ ¬ ℎ 𝑆 𝑏 ) ) |
| 128 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) |
| 129 |
128
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) |
| 130 |
|
df-ot |
⊢ 〈 𝑎 , ℎ , 𝑖 〉 = 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 |
| 131 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) |
| 132 |
130 131
|
eqeltrrid |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) |
| 133 |
|
opex |
⊢ 〈 𝑎 , ℎ 〉 ∈ V |
| 134 |
133 99
|
opeldm |
⊢ ( 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 → 〈 𝑎 , ℎ 〉 ∈ dom 𝑠 ) |
| 135 |
132 134
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → 〈 𝑎 , ℎ 〉 ∈ dom 𝑠 ) |
| 136 |
|
vex |
⊢ ℎ ∈ V |
| 137 |
65 136
|
elimasn |
⊢ ( ℎ ∈ ( dom 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , ℎ 〉 ∈ dom 𝑠 ) |
| 138 |
135 137
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ℎ ∈ ( dom 𝑠 “ { 𝑎 } ) ) |
| 139 |
127 129 138
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ℎ 𝑆 𝑏 ) |
| 140 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ℎ ≠ 𝑏 ) |
| 141 |
140
|
neneqd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ℎ = 𝑏 ) |
| 142 |
|
ioran |
⊢ ( ¬ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ↔ ( ¬ ℎ 𝑆 𝑏 ∧ ¬ ℎ = 𝑏 ) ) |
| 143 |
139 141 142
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ) |
| 144 |
143
|
intn3an2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ) |
| 145 |
144
|
intnanrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 146 |
125 145
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 147 |
|
oteq1 |
⊢ ( 𝑔 = 𝑎 → 〈 𝑔 , ℎ , 𝑖 〉 = 〈 𝑎 , ℎ , 𝑖 〉 ) |
| 148 |
147
|
eleq1d |
⊢ ( 𝑔 = 𝑎 → ( 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ↔ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ) |
| 149 |
148
|
anbi2d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) ) ) |
| 150 |
|
neeq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎 ) ) |
| 151 |
|
biidd |
⊢ ( 𝑔 = 𝑎 → ( ℎ ≠ 𝑏 ↔ ℎ ≠ 𝑏 ) ) |
| 152 |
|
biidd |
⊢ ( 𝑔 = 𝑎 → ( 𝑖 ≠ 𝑐 ↔ 𝑖 ≠ 𝑐 ) ) |
| 153 |
150 151 152
|
3orbi123d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( 𝑎 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 154 |
|
3orass |
⊢ ( ( 𝑎 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 155 |
|
neirr |
⊢ ¬ 𝑎 ≠ 𝑎 |
| 156 |
|
orel1 |
⊢ ( ¬ 𝑎 ≠ 𝑎 → ( ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) → ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 157 |
155 156
|
ax-mp |
⊢ ( ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) → ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) |
| 158 |
|
olc |
⊢ ( ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) → ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 159 |
157 158
|
impbii |
⊢ ( ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) |
| 160 |
154 159
|
bitri |
⊢ ( ( 𝑎 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) |
| 161 |
153 160
|
bitrdi |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 162 |
161
|
anbi2d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
| 163 |
162
|
notbid |
⊢ ( 𝑔 = 𝑎 → ( ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
| 164 |
149 163
|
imbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑎 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) |
| 165 |
146 164
|
mpbiri |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
| 166 |
165
|
impcom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 = 𝑎 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 167 |
|
breq1 |
⊢ ( 𝑑 = 𝑔 → ( 𝑑 𝑅 𝑎 ↔ 𝑔 𝑅 𝑎 ) ) |
| 168 |
167
|
notbid |
⊢ ( 𝑑 = 𝑔 → ( ¬ 𝑑 𝑅 𝑎 ↔ ¬ 𝑔 𝑅 𝑎 ) ) |
| 169 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) |
| 170 |
169
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) |
| 171 |
|
df-ot |
⊢ 〈 𝑔 , ℎ , 𝑖 〉 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 |
| 172 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) |
| 173 |
171 172
|
eqeltrrid |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) |
| 174 |
|
opex |
⊢ 〈 𝑔 , ℎ 〉 ∈ V |
| 175 |
174 99
|
opeldm |
⊢ ( 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 → 〈 𝑔 , ℎ 〉 ∈ dom 𝑠 ) |
| 176 |
|
vex |
⊢ 𝑔 ∈ V |
| 177 |
176 136
|
opeldm |
⊢ ( 〈 𝑔 , ℎ 〉 ∈ dom 𝑠 → 𝑔 ∈ dom dom 𝑠 ) |
| 178 |
173 175 177
|
3syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → 𝑔 ∈ dom dom 𝑠 ) |
| 179 |
168 170 178
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ 𝑔 𝑅 𝑎 ) |
| 180 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → 𝑔 ≠ 𝑎 ) |
| 181 |
180
|
neneqd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ 𝑔 = 𝑎 ) |
| 182 |
|
ioran |
⊢ ( ¬ ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ↔ ( ¬ 𝑔 𝑅 𝑎 ∧ ¬ 𝑔 = 𝑎 ) ) |
| 183 |
179 181 182
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ) |
| 184 |
183
|
intn3an1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ) |
| 185 |
184
|
intnanrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 186 |
166 185
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
| 187 |
186
|
intn3an3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
| 188 |
|
eleq1 |
⊢ ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ( 𝑞 ∈ 𝑠 ↔ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ) |
| 189 |
188
|
anbi2d |
⊢ ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) ) ) |
| 190 |
|
breq1 |
⊢ ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ 〈 𝑔 , ℎ , 𝑖 〉 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 191 |
1
|
xpord3lem |
⊢ ( 〈 𝑔 , ℎ , 𝑖 〉 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
| 192 |
190 191
|
bitrdi |
⊢ ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) |
| 193 |
192
|
notbid |
⊢ ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ( ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ ¬ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) |
| 194 |
189 193
|
imbi12d |
⊢ ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 𝑔 , ℎ , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) ) |
| 195 |
187 194
|
mpbiri |
⊢ ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 196 |
195
|
com12 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 197 |
196
|
exlimdv |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( ∃ 𝑖 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 198 |
197
|
exlimdvv |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( ∃ 𝑔 ∃ ℎ ∃ 𝑖 𝑞 = 〈 𝑔 , ℎ , 𝑖 〉 → ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 199 |
86 198
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) |
| 200 |
199
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) |
| 201 |
|
breq2 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 , 𝑐 〉 → ( 𝑞 𝑈 𝑝 ↔ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 202 |
201
|
notbid |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 , 𝑐 〉 → ( ¬ 𝑞 𝑈 𝑝 ↔ ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 203 |
202
|
ralbidv |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 , 𝑐 〉 → ( ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ↔ ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
| 204 |
203
|
rspcev |
⊢ ( ( 〈 𝑎 , 𝑏 , 𝑐 〉 ∈ 𝑠 ∧ ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
| 205 |
81 200 204
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
| 206 |
74 205
|
rexlimddv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
| 207 |
53 206
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
| 208 |
36 207
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
| 209 |
208
|
ex |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) ) |
| 210 |
209
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) ) |
| 211 |
|
df-fr |
⊢ ( 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∀ 𝑠 ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) ) |
| 212 |
210 211
|
sylibr |
⊢ ( 𝜑 → 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |