Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
⊢ 𝑈 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ( 1st ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑇 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
2 |
|
frxp3.1 |
⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) |
3 |
|
frxp3.2 |
⊢ ( 𝜑 → 𝑆 Fr 𝐵 ) |
4 |
|
frxp3.3 |
⊢ ( 𝜑 → 𝑇 Fr 𝐶 ) |
5 |
|
dmss |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
6 |
5
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
7 |
|
dmxpss |
⊢ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ ( 𝐴 × 𝐵 ) |
8 |
6 7
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) |
9 |
|
dmss |
⊢ ( dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
11 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
12 |
10 11
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ⊆ 𝐴 ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → 𝑠 ≠ ∅ ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
15 |
|
relxp |
⊢ Rel ( ( 𝐴 × 𝐵 ) × 𝐶 ) |
16 |
|
relss |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( Rel ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel 𝑠 ) ) |
17 |
14 15 16
|
mpisyl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → Rel 𝑠 ) |
18 |
|
reldm0 |
⊢ ( Rel 𝑠 → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
20 |
19
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( 𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
21 |
13 20
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ≠ ∅ ) |
22 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
23 |
|
relss |
⊢ ( dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( Rel ( 𝐴 × 𝐵 ) → Rel dom 𝑠 ) ) |
24 |
8 22 23
|
mpisyl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → Rel dom 𝑠 ) |
25 |
|
reldm0 |
⊢ ( Rel dom 𝑠 → ( dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) ) |
27 |
26
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( dom 𝑠 ≠ ∅ ↔ dom dom 𝑠 ≠ ∅ ) ) |
28 |
21 27
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ≠ ∅ ) |
29 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑔 ( ( 𝑔 ⊆ 𝐴 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑔 ∀ 𝑑 ∈ 𝑔 ¬ 𝑑 𝑅 𝑎 ) ) |
30 |
2 29
|
sylib |
⊢ ( 𝜑 → ∀ 𝑔 ( ( 𝑔 ⊆ 𝐴 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑔 ∀ 𝑑 ∈ 𝑔 ¬ 𝑑 𝑅 𝑎 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ∀ 𝑔 ( ( 𝑔 ⊆ 𝐴 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑔 ∀ 𝑑 ∈ 𝑔 ¬ 𝑑 𝑅 𝑎 ) ) |
32 |
|
vex |
⊢ 𝑠 ∈ V |
33 |
32
|
dmex |
⊢ dom 𝑠 ∈ V |
34 |
33
|
dmex |
⊢ dom dom 𝑠 ∈ V |
35 |
|
sseq1 |
⊢ ( 𝑔 = dom dom 𝑠 → ( 𝑔 ⊆ 𝐴 ↔ dom dom 𝑠 ⊆ 𝐴 ) ) |
36 |
|
neeq1 |
⊢ ( 𝑔 = dom dom 𝑠 → ( 𝑔 ≠ ∅ ↔ dom dom 𝑠 ≠ ∅ ) ) |
37 |
35 36
|
anbi12d |
⊢ ( 𝑔 = dom dom 𝑠 → ( ( 𝑔 ⊆ 𝐴 ∧ 𝑔 ≠ ∅ ) ↔ ( dom dom 𝑠 ⊆ 𝐴 ∧ dom dom 𝑠 ≠ ∅ ) ) ) |
38 |
|
raleq |
⊢ ( 𝑔 = dom dom 𝑠 → ( ∀ 𝑑 ∈ 𝑔 ¬ 𝑑 𝑅 𝑎 ↔ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) |
39 |
38
|
rexeqbi1dv |
⊢ ( 𝑔 = dom dom 𝑠 → ( ∃ 𝑎 ∈ 𝑔 ∀ 𝑑 ∈ 𝑔 ¬ 𝑑 𝑅 𝑎 ↔ ∃ 𝑎 ∈ dom dom 𝑠 ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) |
40 |
37 39
|
imbi12d |
⊢ ( 𝑔 = dom dom 𝑠 → ( ( ( 𝑔 ⊆ 𝐴 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑔 ∀ 𝑑 ∈ 𝑔 ¬ 𝑑 𝑅 𝑎 ) ↔ ( ( dom dom 𝑠 ⊆ 𝐴 ∧ dom dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom dom 𝑠 ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ) |
41 |
34 40
|
spcv |
⊢ ( ∀ 𝑔 ( ( 𝑔 ⊆ 𝐴 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑔 ∀ 𝑑 ∈ 𝑔 ¬ 𝑑 𝑅 𝑎 ) → ( ( dom dom 𝑠 ⊆ 𝐴 ∧ dom dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom dom 𝑠 ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) |
42 |
31 41
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( ( dom dom 𝑠 ⊆ 𝐴 ∧ dom dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom dom 𝑠 ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) |
43 |
12 28 42
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑎 ∈ dom dom 𝑠 ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) |
44 |
|
imassrn |
⊢ ( dom 𝑠 “ { 𝑎 } ) ⊆ ran dom 𝑠 |
45 |
|
rnss |
⊢ ( dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran dom 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
46 |
8 45
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran dom 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
47 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
48 |
46 47
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran dom 𝑠 ⊆ 𝐵 ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ran dom 𝑠 ⊆ 𝐵 ) |
50 |
44 49
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) |
51 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → 𝑎 ∈ dom dom 𝑠 ) |
52 |
|
imadisj |
⊢ ( ( dom 𝑠 “ { 𝑎 } ) = ∅ ↔ ( dom dom 𝑠 ∩ { 𝑎 } ) = ∅ ) |
53 |
|
disjsn |
⊢ ( ( dom dom 𝑠 ∩ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠 ) |
54 |
52 53
|
bitri |
⊢ ( ( dom 𝑠 “ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠 ) |
55 |
54
|
necon2abii |
⊢ ( 𝑎 ∈ dom dom 𝑠 ↔ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
56 |
51 55
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
57 |
|
df-fr |
⊢ ( 𝑆 Fr 𝐵 ↔ ∀ 𝑔 ( ( 𝑔 ⊆ 𝐵 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑔 ∀ 𝑒 ∈ 𝑔 ¬ 𝑒 𝑆 𝑏 ) ) |
58 |
3 57
|
sylib |
⊢ ( 𝜑 → ∀ 𝑔 ( ( 𝑔 ⊆ 𝐵 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑔 ∀ 𝑒 ∈ 𝑔 ¬ 𝑒 𝑆 𝑏 ) ) |
59 |
33
|
imaex |
⊢ ( dom 𝑠 “ { 𝑎 } ) ∈ V |
60 |
|
sseq1 |
⊢ ( 𝑔 = ( dom 𝑠 “ { 𝑎 } ) → ( 𝑔 ⊆ 𝐵 ↔ ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) ) |
61 |
|
neeq1 |
⊢ ( 𝑔 = ( dom 𝑠 “ { 𝑎 } ) → ( 𝑔 ≠ ∅ ↔ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) |
62 |
60 61
|
anbi12d |
⊢ ( 𝑔 = ( dom 𝑠 “ { 𝑎 } ) → ( ( 𝑔 ⊆ 𝐵 ∧ 𝑔 ≠ ∅ ) ↔ ( ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) ) |
63 |
|
raleq |
⊢ ( 𝑔 = ( dom 𝑠 “ { 𝑎 } ) → ( ∀ 𝑒 ∈ 𝑔 ¬ 𝑒 𝑆 𝑏 ↔ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) |
64 |
63
|
rexeqbi1dv |
⊢ ( 𝑔 = ( dom 𝑠 “ { 𝑎 } ) → ( ∃ 𝑏 ∈ 𝑔 ∀ 𝑒 ∈ 𝑔 ¬ 𝑒 𝑆 𝑏 ↔ ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) |
65 |
62 64
|
imbi12d |
⊢ ( 𝑔 = ( dom 𝑠 “ { 𝑎 } ) → ( ( ( 𝑔 ⊆ 𝐵 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑔 ∀ 𝑒 ∈ 𝑔 ¬ 𝑒 𝑆 𝑏 ) ↔ ( ( ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ) |
66 |
59 65
|
spcv |
⊢ ( ∀ 𝑔 ( ( 𝑔 ⊆ 𝐵 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑔 ∀ 𝑒 ∈ 𝑔 ¬ 𝑒 𝑆 𝑏 ) → ( ( ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) |
67 |
58 66
|
syl |
⊢ ( 𝜑 → ( ( ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( ( ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) |
69 |
50 56 68
|
mp2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) |
70 |
|
imassrn |
⊢ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ ran 𝑠 |
71 |
|
rnss |
⊢ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ran 𝑠 ⊆ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
72 |
71
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran 𝑠 ⊆ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
73 |
|
rnxpss |
⊢ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ 𝐶 |
74 |
72 73
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran 𝑠 ⊆ 𝐶 ) |
75 |
70 74
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ) |
76 |
75
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ) |
77 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ) |
78 |
|
vex |
⊢ 𝑎 ∈ V |
79 |
|
vex |
⊢ 𝑏 ∈ V |
80 |
78 79
|
elimasn |
⊢ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
81 |
77 80
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
82 |
|
imadisj |
⊢ ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ↔ ( dom 𝑠 ∩ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ) |
83 |
|
disjsn |
⊢ ( ( dom 𝑠 ∩ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
84 |
82 83
|
bitri |
⊢ ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) = ∅ ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ) |
85 |
84
|
necon2abii |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ dom 𝑠 ↔ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) |
86 |
81 85
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) |
87 |
|
df-fr |
⊢ ( 𝑇 Fr 𝐶 ↔ ∀ 𝑔 ( ( 𝑔 ⊆ 𝐶 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑔 ∀ 𝑓 ∈ 𝑔 ¬ 𝑓 𝑇 𝑐 ) ) |
88 |
4 87
|
sylib |
⊢ ( 𝜑 → ∀ 𝑔 ( ( 𝑔 ⊆ 𝐶 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑔 ∀ 𝑓 ∈ 𝑔 ¬ 𝑓 𝑇 𝑐 ) ) |
89 |
32
|
imaex |
⊢ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∈ V |
90 |
|
sseq1 |
⊢ ( 𝑔 = ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) → ( 𝑔 ⊆ 𝐶 ↔ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ) ) |
91 |
|
neeq1 |
⊢ ( 𝑔 = ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) → ( 𝑔 ≠ ∅ ↔ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) ) |
92 |
90 91
|
anbi12d |
⊢ ( 𝑔 = ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) → ( ( 𝑔 ⊆ 𝐶 ∧ 𝑔 ≠ ∅ ) ↔ ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ∧ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) ) ) |
93 |
|
raleq |
⊢ ( 𝑔 = ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) → ( ∀ 𝑓 ∈ 𝑔 ¬ 𝑓 𝑇 𝑐 ↔ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) |
94 |
93
|
rexeqbi1dv |
⊢ ( 𝑔 = ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) → ( ∃ 𝑐 ∈ 𝑔 ∀ 𝑓 ∈ 𝑔 ¬ 𝑓 𝑇 𝑐 ↔ ∃ 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) |
95 |
92 94
|
imbi12d |
⊢ ( 𝑔 = ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) → ( ( ( 𝑔 ⊆ 𝐶 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑔 ∀ 𝑓 ∈ 𝑔 ¬ 𝑓 𝑇 𝑐 ) ↔ ( ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ∧ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) → ∃ 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ) |
96 |
89 95
|
spcv |
⊢ ( ∀ 𝑔 ( ( 𝑔 ⊆ 𝐶 ∧ 𝑔 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑔 ∀ 𝑓 ∈ 𝑔 ¬ 𝑓 𝑇 𝑐 ) → ( ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ∧ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) → ∃ 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) |
97 |
88 96
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ∧ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) → ∃ 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) |
98 |
97
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( ( ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ⊆ 𝐶 ∧ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ≠ ∅ ) → ∃ 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) |
99 |
76 86 98
|
mp2and |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∃ 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) |
100 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ) |
101 |
|
opex |
⊢ 〈 𝑎 , 𝑏 〉 ∈ V |
102 |
|
vex |
⊢ 𝑐 ∈ V |
103 |
101 102
|
elimasn |
⊢ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ↔ 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∈ 𝑠 ) |
104 |
100 103
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∈ 𝑠 ) |
105 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
106 |
105
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
107 |
|
elxpxpss |
⊢ ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ 𝑠 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ) |
108 |
106 107
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑖 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ) |
109 |
|
df-ne |
⊢ ( 𝑖 ≠ 𝑐 ↔ ¬ 𝑖 = 𝑐 ) |
110 |
109
|
con2bii |
⊢ ( 𝑖 = 𝑐 ↔ ¬ 𝑖 ≠ 𝑐 ) |
111 |
110
|
biimpi |
⊢ ( 𝑖 = 𝑐 → ¬ 𝑖 ≠ 𝑐 ) |
112 |
111
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 = 𝑐 ) → ¬ 𝑖 ≠ 𝑐 ) |
113 |
112
|
intnand |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 = 𝑐 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) |
114 |
|
breq1 |
⊢ ( 𝑓 = 𝑖 → ( 𝑓 𝑇 𝑐 ↔ 𝑖 𝑇 𝑐 ) ) |
115 |
114
|
notbid |
⊢ ( 𝑓 = 𝑖 → ( ¬ 𝑓 𝑇 𝑐 ↔ ¬ 𝑖 𝑇 𝑐 ) ) |
116 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) |
117 |
116
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) |
118 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) |
119 |
|
vex |
⊢ 𝑖 ∈ V |
120 |
101 119
|
elimasn |
⊢ ( 𝑖 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ↔ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) |
121 |
118 120
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → 𝑖 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ) |
122 |
115 117 121
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ 𝑖 𝑇 𝑐 ) |
123 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → 𝑖 ≠ 𝑐 ) |
124 |
123
|
neneqd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ 𝑖 = 𝑐 ) |
125 |
|
ioran |
⊢ ( ¬ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ↔ ( ¬ 𝑖 𝑇 𝑐 ∧ ¬ 𝑖 = 𝑐 ) ) |
126 |
122 124 125
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) |
127 |
126
|
intn3an3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ) |
128 |
127
|
intnanrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑖 ≠ 𝑐 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) |
129 |
113 128
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) |
130 |
|
opeq2 |
⊢ ( ℎ = 𝑏 → 〈 𝑎 , ℎ 〉 = 〈 𝑎 , 𝑏 〉 ) |
131 |
130
|
opeq1d |
⊢ ( ℎ = 𝑏 → 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 = 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ) |
132 |
131
|
eleq1d |
⊢ ( ℎ = 𝑏 → ( 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ↔ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ) |
133 |
132
|
anbi2d |
⊢ ( ℎ = 𝑏 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) ) ) |
134 |
|
neeq1 |
⊢ ( ℎ = 𝑏 → ( ℎ ≠ 𝑏 ↔ 𝑏 ≠ 𝑏 ) ) |
135 |
134
|
orbi1d |
⊢ ( ℎ = 𝑏 → ( ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
136 |
|
neirr |
⊢ ¬ 𝑏 ≠ 𝑏 |
137 |
|
orel1 |
⊢ ( ¬ 𝑏 ≠ 𝑏 → ( ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) → 𝑖 ≠ 𝑐 ) ) |
138 |
136 137
|
ax-mp |
⊢ ( ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) → 𝑖 ≠ 𝑐 ) |
139 |
|
olc |
⊢ ( 𝑖 ≠ 𝑐 → ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) |
140 |
138 139
|
impbii |
⊢ ( ( 𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ 𝑖 ≠ 𝑐 ) |
141 |
135 140
|
bitrdi |
⊢ ( ℎ = 𝑏 → ( ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ 𝑖 ≠ 𝑐 ) ) |
142 |
141
|
anbi2d |
⊢ ( ℎ = 𝑏 → ( ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) ) |
143 |
142
|
notbid |
⊢ ( ℎ = 𝑏 → ( ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) ) |
144 |
133 143
|
imbi12d |
⊢ ( ℎ = 𝑏 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , 𝑏 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ 𝑖 ≠ 𝑐 ) ) ) ) |
145 |
129 144
|
mpbiri |
⊢ ( ℎ = 𝑏 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
146 |
145
|
impcom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ = 𝑏 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
147 |
|
breq1 |
⊢ ( 𝑒 = ℎ → ( 𝑒 𝑆 𝑏 ↔ ℎ 𝑆 𝑏 ) ) |
148 |
147
|
notbid |
⊢ ( 𝑒 = ℎ → ( ¬ 𝑒 𝑆 𝑏 ↔ ¬ ℎ 𝑆 𝑏 ) ) |
149 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) |
150 |
149
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) |
151 |
|
opex |
⊢ 〈 𝑎 , ℎ 〉 ∈ V |
152 |
151 119
|
opeldm |
⊢ ( 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 → 〈 𝑎 , ℎ 〉 ∈ dom 𝑠 ) |
153 |
152
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → 〈 𝑎 , ℎ 〉 ∈ dom 𝑠 ) |
154 |
153
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → 〈 𝑎 , ℎ 〉 ∈ dom 𝑠 ) |
155 |
|
vex |
⊢ ℎ ∈ V |
156 |
78 155
|
elimasn |
⊢ ( ℎ ∈ ( dom 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , ℎ 〉 ∈ dom 𝑠 ) |
157 |
154 156
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ℎ ∈ ( dom 𝑠 “ { 𝑎 } ) ) |
158 |
148 150 157
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ℎ 𝑆 𝑏 ) |
159 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ℎ ≠ 𝑏 ) |
160 |
159
|
neneqd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ℎ = 𝑏 ) |
161 |
|
ioran |
⊢ ( ¬ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ↔ ( ¬ ℎ 𝑆 𝑏 ∧ ¬ ℎ = 𝑏 ) ) |
162 |
158 160 161
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ) |
163 |
162
|
intn3an2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ) |
164 |
163
|
intnanrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ ℎ ≠ 𝑏 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
165 |
146 164
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
166 |
|
opeq1 |
⊢ ( 𝑔 = 𝑎 → 〈 𝑔 , ℎ 〉 = 〈 𝑎 , ℎ 〉 ) |
167 |
166
|
opeq1d |
⊢ ( 𝑔 = 𝑎 → 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 = 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ) |
168 |
167
|
eleq1d |
⊢ ( 𝑔 = 𝑎 → ( 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ↔ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ) |
169 |
168
|
anbi2d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ) ) |
170 |
|
3orass |
⊢ ( ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( 𝑔 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
171 |
|
neeq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎 ) ) |
172 |
171
|
orbi1d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑔 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
173 |
170 172
|
syl5bb |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
174 |
|
neirr |
⊢ ¬ 𝑎 ≠ 𝑎 |
175 |
|
orel1 |
⊢ ( ¬ 𝑎 ≠ 𝑎 → ( ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) → ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
176 |
174 175
|
ax-mp |
⊢ ( ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) → ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) |
177 |
|
olc |
⊢ ( ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) → ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
178 |
176 177
|
impbii |
⊢ ( ( 𝑎 ≠ 𝑎 ∨ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) |
179 |
173 178
|
bitrdi |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ↔ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
180 |
179
|
anbi2d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
181 |
180
|
notbid |
⊢ ( 𝑔 = 𝑎 → ( ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ↔ ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
182 |
169 181
|
imbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑎 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) |
183 |
165 182
|
mpbiri |
⊢ ( 𝑔 = 𝑎 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
184 |
183
|
impcom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 = 𝑎 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
185 |
|
breq1 |
⊢ ( 𝑑 = 𝑔 → ( 𝑑 𝑅 𝑎 ↔ 𝑔 𝑅 𝑎 ) ) |
186 |
185
|
notbid |
⊢ ( 𝑑 = 𝑔 → ( ¬ 𝑑 𝑅 𝑎 ↔ ¬ 𝑔 𝑅 𝑎 ) ) |
187 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) |
188 |
187
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) |
189 |
|
opex |
⊢ 〈 𝑔 , ℎ 〉 ∈ V |
190 |
189 119
|
opeldm |
⊢ ( 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 → 〈 𝑔 , ℎ 〉 ∈ dom 𝑠 ) |
191 |
190
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → 〈 𝑔 , ℎ 〉 ∈ dom 𝑠 ) |
192 |
|
vex |
⊢ 𝑔 ∈ V |
193 |
192 155
|
opeldm |
⊢ ( 〈 𝑔 , ℎ 〉 ∈ dom 𝑠 → 𝑔 ∈ dom dom 𝑠 ) |
194 |
191 193
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → 𝑔 ∈ dom dom 𝑠 ) |
195 |
194
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → 𝑔 ∈ dom dom 𝑠 ) |
196 |
186 188 195
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ 𝑔 𝑅 𝑎 ) |
197 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → 𝑔 ≠ 𝑎 ) |
198 |
197
|
neneqd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ 𝑔 = 𝑎 ) |
199 |
|
ioran |
⊢ ( ¬ ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ↔ ( ¬ 𝑔 𝑅 𝑎 ∧ ¬ 𝑔 = 𝑎 ) ) |
200 |
196 198 199
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ) |
201 |
200
|
intn3an1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ) |
202 |
201
|
intnanrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ∧ 𝑔 ≠ 𝑎 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
203 |
184 202
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) |
204 |
203
|
intn3an3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
205 |
|
eleq1 |
⊢ ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ( 𝑞 ∈ 𝑠 ↔ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ) |
206 |
205
|
anbi2d |
⊢ ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) ) ) |
207 |
|
breq1 |
⊢ ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ( 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ↔ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
208 |
1
|
xpord3lem |
⊢ ( 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ↔ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) |
209 |
207 208
|
bitrdi |
⊢ ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ( 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ↔ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) |
210 |
209
|
notbid |
⊢ ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ( ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ↔ ¬ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) |
211 |
206 210
|
imbi12d |
⊢ ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 ∈ 𝑠 ) → ¬ ( ( 𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎 ∨ 𝑔 = 𝑎 ) ∧ ( ℎ 𝑆 𝑏 ∨ ℎ = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐 ∨ 𝑖 = 𝑐 ) ) ∧ ( 𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐 ) ) ) ) ) ) |
212 |
204 211
|
mpbiri |
⊢ ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
213 |
212
|
com12 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
214 |
213
|
exlimdv |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( ∃ 𝑖 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
215 |
214
|
exlimdvv |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( ∃ 𝑔 ∃ ℎ ∃ 𝑖 𝑞 = 〈 〈 𝑔 , ℎ 〉 , 𝑖 〉 → ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
216 |
108 215
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) |
217 |
216
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) |
218 |
|
breq2 |
⊢ ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → ( 𝑞 𝑈 𝑝 ↔ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
219 |
218
|
notbid |
⊢ ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → ( ¬ 𝑞 𝑈 𝑝 ↔ ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
220 |
219
|
ralbidv |
⊢ ( 𝑝 = 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 → ( ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ↔ ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) ) |
221 |
220
|
rspcev |
⊢ ( ( 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∈ 𝑠 ∧ ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
222 |
104 217 221
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { 〈 𝑎 , 𝑏 〉 } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
223 |
99 222
|
rexlimddv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
224 |
69 223
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
225 |
43 224
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) |
226 |
225
|
ex |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) ) |
227 |
226
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) ) |
228 |
|
df-fr |
⊢ ( 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∀ 𝑠 ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑈 𝑝 ) ) |
229 |
227 228
|
sylibr |
⊢ ( 𝜑 → 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |