Metamath Proof Explorer


Theorem elxpxpss

Description: Version of elrel for triple cross products. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Assertion elxpxpss ( ( 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ∧ 𝐴𝑅 ) → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )

Proof

Step Hyp Ref Expression
1 ssel2 ( ( 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ∧ 𝐴𝑅 ) → 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) )
2 elxpxp ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ↔ ∃ 𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
3 rexex ( ∃ 𝑧𝐷 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ∃ 𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
4 3 reximi ( ∃ 𝑦𝐶𝑧𝐷 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ∃ 𝑦𝐶𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
5 rexex ( ∃ 𝑦𝐶𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ∃ 𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
6 4 5 syl ( ∃ 𝑦𝐶𝑧𝐷 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ∃ 𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
7 6 reximi ( ∃ 𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ∃ 𝑥𝐵𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
8 rexex ( ∃ 𝑥𝐵𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
9 7 8 syl ( ∃ 𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
10 2 9 sylbi ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )
11 1 10 syl ( ( 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ∧ 𝐴𝑅 ) → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ )