Metamath Proof Explorer


Theorem el2xpss

Description: Version of elrel for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025)

Ref Expression
Assertion el2xpss ARRB×C×DxyzA=xyz

Proof

Step Hyp Ref Expression
1 ssel2 RB×C×DARAB×C×D
2 1 ancoms ARRB×C×DAB×C×D
3 el2xptp AB×C×DxByCzDA=xyz
4 rexex zDA=xyzzA=xyz
5 4 reximi yCzDA=xyzyCzA=xyz
6 rexex yCzA=xyzyzA=xyz
7 5 6 syl yCzDA=xyzyzA=xyz
8 7 reximi xByCzDA=xyzxByzA=xyz
9 rexex xByzA=xyzxyzA=xyz
10 8 9 syl xByCzDA=xyzxyzA=xyz
11 3 10 sylbi AB×C×DxyzA=xyz
12 2 11 syl ARRB×C×DxyzA=xyz