Metamath Proof Explorer


Theorem po2nr

Description: A partial order has no 2-cycle loops. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion po2nr RPoABACA¬BRCCRB

Proof

Step Hyp Ref Expression
1 poirr RPoABA¬BRB
2 1 adantrr RPoABACA¬BRB
3 potr RPoABACABABRCCRBBRB
4 3 3exp2 RPoABACABABRCCRBBRB
5 4 com34 RPoABABACABRCCRBBRB
6 5 pm2.43d RPoABACABRCCRBBRB
7 6 imp32 RPoABACABRCCRBBRB
8 2 7 mtod RPoABACA¬BRCCRB