Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
po3nr
Next ⟩
po2ne
Metamath Proof Explorer
Ascii
Unicode
Theorem
po3nr
Description:
A partial order has no 3-cycle loops.
(Contributed by
NM
, 27-Mar-1997)
Ref
Expression
Assertion
po3nr
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
¬
B
R
C
∧
C
R
D
∧
D
R
B
Proof
Step
Hyp
Ref
Expression
1
po2nr
⊢
R
Po
A
∧
B
∈
A
∧
D
∈
A
→
¬
B
R
D
∧
D
R
B
2
1
3adantr2
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
¬
B
R
D
∧
D
R
B
3
df-3an
⊢
B
R
C
∧
C
R
D
∧
D
R
B
↔
B
R
C
∧
C
R
D
∧
D
R
B
4
potr
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
→
B
R
D
5
4
anim1d
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
∧
D
R
B
→
B
R
D
∧
D
R
B
6
3
5
syl5bi
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
∧
D
R
B
→
B
R
D
∧
D
R
B
7
2
6
mtod
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
¬
B
R
C
∧
C
R
D
∧
D
R
B