Metamath Proof Explorer


Theorem po3nr

Description: A partial order has no 3-cycle loops. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion po3nr RPoABACADA¬BRCCRDDRB

Proof

Step Hyp Ref Expression
1 po2nr RPoABADA¬BRDDRB
2 1 3adantr2 RPoABACADA¬BRDDRB
3 df-3an BRCCRDDRBBRCCRDDRB
4 potr RPoABACADABRCCRDBRD
5 4 anim1d RPoABACADABRCCRDDRBBRDDRB
6 3 5 biimtrid RPoABACADABRCCRDDRBBRDDRB
7 2 6 mtod RPoABACADA¬BRCCRDDRB