Metamath Proof Explorer


Theorem po3nr

Description: A partial order has no 3-cycle loops. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion po3nr R Po A B A C A D A ¬ B R C C R D D R B

Proof

Step Hyp Ref Expression
1 po2nr R Po A B A D A ¬ B R D D R B
2 1 3adantr2 R Po A B A C A D A ¬ B R D D R B
3 df-3an B R C C R D D R B B R C C R D D R B
4 potr R Po A B A C A D A B R C C R D B R D
5 4 anim1d R Po A B A C A D A B R C C R D D R B B R D D R B
6 3 5 syl5bi R Po A B A C A D A B R C C R D D R B B R D D R B
7 2 6 mtod R Po A B A C A D A ¬ B R C C R D D R B