Metamath Proof Explorer
Description: Triple negated disjunction introduction. (Contributed by Scott Fenton, 20-Apr-2011)
|
|
Ref |
Expression |
|
Hypotheses |
3pm3.2ni.1 |
⊢ ¬ 𝜑 |
|
|
3pm3.2ni.2 |
⊢ ¬ 𝜓 |
|
|
3pm3.2ni.3 |
⊢ ¬ 𝜒 |
|
Assertion |
3pm3.2ni |
⊢ ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3pm3.2ni.1 |
⊢ ¬ 𝜑 |
2 |
|
3pm3.2ni.2 |
⊢ ¬ 𝜓 |
3 |
|
3pm3.2ni.3 |
⊢ ¬ 𝜒 |
4 |
1 2
|
pm3.2ni |
⊢ ¬ ( 𝜑 ∨ 𝜓 ) |
5 |
4 3
|
pm3.2ni |
⊢ ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) |
6 |
|
df-3or |
⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
7 |
5 6
|
mtbir |
⊢ ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |