Description: Double deduction form of 3jaoi . (Contributed by Scott Fenton, 20-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3jaodd.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜂 ) ) ) | |
| 3jaodd.2 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜂 ) ) ) | ||
| 3jaodd.3 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) | ||
| Assertion | 3jaodd | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∨ 𝜃 ∨ 𝜏 ) → 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodd.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜂 ) ) ) | |
| 2 | 3jaodd.2 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜂 ) ) ) | |
| 3 | 3jaodd.3 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) | |
| 4 | 1 | com3r | ⊢ ( 𝜒 → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) |
| 5 | 2 | com3r | ⊢ ( 𝜃 → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) |
| 6 | 3 | com3r | ⊢ ( 𝜏 → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) |
| 7 | 4 5 6 | 3jaoi | ⊢ ( ( 𝜒 ∨ 𝜃 ∨ 𝜏 ) → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) |
| 8 | 7 | com3l | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∨ 𝜃 ∨ 𝜏 ) → 𝜂 ) ) ) |