Description: Double deduction form of 3jaoi . (Contributed by Scott Fenton, 20-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3jaodd.1 | |- ( ph -> ( ps -> ( ch -> et ) ) ) |
|
3jaodd.2 | |- ( ph -> ( ps -> ( th -> et ) ) ) |
||
3jaodd.3 | |- ( ph -> ( ps -> ( ta -> et ) ) ) |
||
Assertion | 3jaodd | |- ( ph -> ( ps -> ( ( ch \/ th \/ ta ) -> et ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodd.1 | |- ( ph -> ( ps -> ( ch -> et ) ) ) |
|
2 | 3jaodd.2 | |- ( ph -> ( ps -> ( th -> et ) ) ) |
|
3 | 3jaodd.3 | |- ( ph -> ( ps -> ( ta -> et ) ) ) |
|
4 | 1 | com3r | |- ( ch -> ( ph -> ( ps -> et ) ) ) |
5 | 2 | com3r | |- ( th -> ( ph -> ( ps -> et ) ) ) |
6 | 3 | com3r | |- ( ta -> ( ph -> ( ps -> et ) ) ) |
7 | 4 5 6 | 3jaoi | |- ( ( ch \/ th \/ ta ) -> ( ph -> ( ps -> et ) ) ) |
8 | 7 | com3l | |- ( ph -> ( ps -> ( ( ch \/ th \/ ta ) -> et ) ) ) |