Description: Double deduction form of 3jaoi . (Contributed by Scott Fenton, 20-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3jaodd.1 | |- ( ph -> ( ps -> ( ch -> et ) ) ) |
|
| 3jaodd.2 | |- ( ph -> ( ps -> ( th -> et ) ) ) |
||
| 3jaodd.3 | |- ( ph -> ( ps -> ( ta -> et ) ) ) |
||
| Assertion | 3jaodd | |- ( ph -> ( ps -> ( ( ch \/ th \/ ta ) -> et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodd.1 | |- ( ph -> ( ps -> ( ch -> et ) ) ) |
|
| 2 | 3jaodd.2 | |- ( ph -> ( ps -> ( th -> et ) ) ) |
|
| 3 | 3jaodd.3 | |- ( ph -> ( ps -> ( ta -> et ) ) ) |
|
| 4 | 1 | com3r | |- ( ch -> ( ph -> ( ps -> et ) ) ) |
| 5 | 2 | com3r | |- ( th -> ( ph -> ( ps -> et ) ) ) |
| 6 | 3 | com3r | |- ( ta -> ( ph -> ( ps -> et ) ) ) |
| 7 | 4 5 6 | 3jaoi | |- ( ( ch \/ th \/ ta ) -> ( ph -> ( ps -> et ) ) ) |
| 8 | 7 | com3l | |- ( ph -> ( ps -> ( ( ch \/ th \/ ta ) -> et ) ) ) |