Metamath Proof Explorer


Theorem 3jaodd

Description: Double deduction form of 3jaoi . (Contributed by Scott Fenton, 20-Apr-2011)

Ref Expression
Hypotheses 3jaodd.1
|- ( ph -> ( ps -> ( ch -> et ) ) )
3jaodd.2
|- ( ph -> ( ps -> ( th -> et ) ) )
3jaodd.3
|- ( ph -> ( ps -> ( ta -> et ) ) )
Assertion 3jaodd
|- ( ph -> ( ps -> ( ( ch \/ th \/ ta ) -> et ) ) )

Proof

Step Hyp Ref Expression
1 3jaodd.1
 |-  ( ph -> ( ps -> ( ch -> et ) ) )
2 3jaodd.2
 |-  ( ph -> ( ps -> ( th -> et ) ) )
3 3jaodd.3
 |-  ( ph -> ( ps -> ( ta -> et ) ) )
4 1 com3r
 |-  ( ch -> ( ph -> ( ps -> et ) ) )
5 2 com3r
 |-  ( th -> ( ph -> ( ps -> et ) ) )
6 3 com3r
 |-  ( ta -> ( ph -> ( ps -> et ) ) )
7 4 5 6 3jaoi
 |-  ( ( ch \/ th \/ ta ) -> ( ph -> ( ps -> et ) ) )
8 7 com3l
 |-  ( ph -> ( ps -> ( ( ch \/ th \/ ta ) -> et ) ) )