Description: Closed form of 3ori . (Contributed by Scott Fenton, 20-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 3orit | |- ( ( ph \/ ps \/ ch ) <-> ( ( -. ph /\ -. ps ) -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or | |- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
|
2 | df-or | |- ( ( ( ph \/ ps ) \/ ch ) <-> ( -. ( ph \/ ps ) -> ch ) ) |
|
3 | ioran | |- ( -. ( ph \/ ps ) <-> ( -. ph /\ -. ps ) ) |
|
4 | 3 | imbi1i | |- ( ( -. ( ph \/ ps ) -> ch ) <-> ( ( -. ph /\ -. ps ) -> ch ) ) |
5 | 1 2 4 | 3bitri | |- ( ( ph \/ ps \/ ch ) <-> ( ( -. ph /\ -. ps ) -> ch ) ) |