Metamath Proof Explorer


Theorem 3orit

Description: Closed form of 3ori . (Contributed by Scott Fenton, 20-Apr-2011)

Ref Expression
Assertion 3orit
|- ( ( ph \/ ps \/ ch ) <-> ( ( -. ph /\ -. ps ) -> ch ) )

Proof

Step Hyp Ref Expression
1 df-3or
 |-  ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) )
2 df-or
 |-  ( ( ( ph \/ ps ) \/ ch ) <-> ( -. ( ph \/ ps ) -> ch ) )
3 ioran
 |-  ( -. ( ph \/ ps ) <-> ( -. ph /\ -. ps ) )
4 3 imbi1i
 |-  ( ( -. ( ph \/ ps ) -> ch ) <-> ( ( -. ph /\ -. ps ) -> ch ) )
5 1 2 4 3bitri
 |-  ( ( ph \/ ps \/ ch ) <-> ( ( -. ph /\ -. ps ) -> ch ) )