Description: A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimpexp | |- ( ( ( ph <-> ps ) -> ch ) <-> ( ( ph -> ps ) -> ( ( ps -> ph ) -> ch ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfbi2 | |- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) | |
| 2 | 1 | imbi1i | |- ( ( ( ph <-> ps ) -> ch ) <-> ( ( ( ph -> ps ) /\ ( ps -> ph ) ) -> ch ) ) | 
| 3 | impexp | |- ( ( ( ( ph -> ps ) /\ ( ps -> ph ) ) -> ch ) <-> ( ( ph -> ps ) -> ( ( ps -> ph ) -> ch ) ) ) | |
| 4 | 2 3 | bitri | |- ( ( ( ph <-> ps ) -> ch ) <-> ( ( ph -> ps ) -> ( ( ps -> ph ) -> ch ) ) ) |