Description: A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | biimpexp | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) | |
2 | 1 | imbi1i | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) → 𝜒 ) ) |
3 | impexp | ⊢ ( ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) ) | |
4 | 2 3 | bitri | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) ) |