Description: A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimpexp | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) | |
| 2 | 1 | imbi1i | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) → 𝜒 ) ) | 
| 3 | impexp | ⊢ ( ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → 𝜒 ) ) ) |