Metamath Proof Explorer


Theorem biimpexp

Description: A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010)

Ref Expression
Assertion biimpexp φ ψ χ φ ψ ψ φ χ

Proof

Step Hyp Ref Expression
1 dfbi2 φ ψ φ ψ ψ φ
2 1 imbi1i φ ψ χ φ ψ ψ φ χ
3 impexp φ ψ ψ φ χ φ ψ ψ φ χ
4 2 3 bitri φ ψ χ φ ψ ψ φ χ