Metamath Proof Explorer


Theorem biimpexp

Description: A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010)

Ref Expression
Assertion biimpexp φψχφψψφχ

Proof

Step Hyp Ref Expression
1 dfbi2 φψφψψφ
2 1 imbi1i φψχφψψφχ
3 impexp φψψφχφψψφχ
4 2 3 bitri φψχφψψφχ