Metamath Proof Explorer


Theorem 3orit

Description: Closed form of 3ori . (Contributed by Scott Fenton, 20-Apr-2011)

Ref Expression
Assertion 3orit ( ( 𝜑𝜓𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 df-3or ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
2 df-or ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) → 𝜒 ) )
3 ioran ( ¬ ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) )
4 3 imbi1i ( ( ¬ ( 𝜑𝜓 ) → 𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) )
5 1 2 4 3bitri ( ( 𝜑𝜓𝜒 ) ↔ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) )